Advertisement

Very high thermal stability with excellent dielectric, and non-ohmics properties of Mg-doped CaCu3Ti4.2O12 ceramics

  • Ekaphan Swatsitang
  • Krissana Prompa
  • Thanin Putjuso
Article
  • 69 Downloads

Abstract

In this work, the nominal CaCu3−xMgxTi4.2O12 (0.00, 0.05 and 0.10) ceramics were prepared by sintering pellets of their precursor powders obtained by a polymer pyrolysis solution method at 1100 °C for different sintering time of 8 and 12 h. Very low loss tangent (tanδ) < 0.009–0.014 and giant dielectric constant (ε′) ∼ 1.1 × 104–1.8 × 104 with excellent temperature coefficient (Δε′) less than ± 15% in a temperature range of − 60 to 210 °C were achieved. These excellent performances suggested a potent application of the ceramics for high temperature X8R and X9R capacitors. It was found that tanδ values decreased with increasing Mg2+ dopants due to the increase of grain boundary resistance (Rgb) caused by the very high density of grain, resulting from the substitution of small ionic radius Mg2+ dopants in the structure. In addition, CaCu3−xMgxTi4.2O12 ceramics displayed non-linear characteristics with the significant enhancements of a non-linear coefficient (α) and a breakdown field (Eb) due to Mg2+doping. The high values of ε′ (14012), α (13.64) and Eb (5977.02 V/cm) with very low tanδ value (0.009) were obtained in a CaCu2.90Mg0.10Ti4.2O12 ceramic sintered at 1100 °C for 8 h.

Notes

Acknowledgements

This work was financially supported by the National Research Council of Thailand (NRCT) under Rajamangala University of Technology Rattanakosin (Grant No. 2562). It was also supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (PHD/0207/2558). The Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen, Thailand and Integrated Nanotechnology Research Center (INRC), Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand are also grateful for their co-financial support. The authors express their appreciation to the National Metal and Materials Technology Center (MTEC), Thailand Science Park, Pathumthani, Thailand for dielectric measurements.

References

  1. 1.
    S. Gao, S. Wu, Y. Zhang, H. Yang, X. Wang, Mater. Sci. Eng. B 176, 68–71 (2011)CrossRefGoogle Scholar
  2. 2.
    C. Sun, X. Wang, C. Ma, L. Li, J. Am. Ceram. Soc. 92, 1613–1616 (2009)CrossRefGoogle Scholar
  3. 3.
    Z. Hu, B. Cui, M. Li, L. Li, J. Mater. Sci.: Mater. Electron. 24, 3850–3855 (2013)Google Scholar
  4. 4.
    J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, J. Eur. Ceram. Soc. 34, 2941–2950 (2014)CrossRefGoogle Scholar
  5. 5.
    J. Boonlakhorn, B. Putasaeng, P. Kidkhunthod, P. Thongbai, Mater. Des. 92, 494–498 (2016)CrossRefGoogle Scholar
  6. 6.
    S.M. Galeb, H. Maher, U.S. Patent US6727200 B2 (2004)Google Scholar
  7. 7.
    B. Tang, S.-R. Zhang, X.-H. Zhou, Y. Yuan, L.-B. Yang, J. Electroceram. 25, 93–97 (2010)CrossRefGoogle Scholar
  8. 8.
    Z. Shen, X. Wang, L. Li, J. Mater. Sci.: Mater. Electron. 28, 3768–3773 (2017)Google Scholar
  9. 9.
    X. Huang, W. Zhang, J. Xie, Q. Xu, L. Zhang, H. Hao, H. Liu, M. Cao, J. Mater. Sci.: Mater. Electron. 28, 4204–4210 (2017)Google Scholar
  10. 10.
    C. Su, H. Hao, Q. Xu, Y. Lu, M. Appiah, C. Diao, M. Cao, Z. Yao, H. Liu, J. Mater. Sci.: Mater. Electron. 27, 6140–6149 (2016)Google Scholar
  11. 11.
    Z. Liu, H. Fan, S. Lei, X. Ren, C. Long, J. Eur. Ceram. Soc. 37, 115–122 (2017)CrossRefGoogle Scholar
  12. 12.
    T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B 73, 094124 (2006)CrossRefGoogle Scholar
  13. 13.
    J. Boonlakhorn, P. Kidkhunthod, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, J. Mater. Sci.: Mater. Electron. 26, 2329–2337 (2015)Google Scholar
  14. 14.
    S.-Y. Chung, J.-H. Choi, J.-K. Choi, Appl. Phys. Lett. 91, 091912 (2007)CrossRefGoogle Scholar
  15. 15.
    J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, Ceram. Int. 39, 1057–1064 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Huang, D. Shi, Y. Li, G. Li, Q. Wang, L. Liu, L. Fang, J. Mater. Sci.: Mater. Electron. 24, 1994–1999 (2013)Google Scholar
  17. 17.
    Z. Kafi, A. Kompany, H. Arabi, A. Khorsand Zak, J. Alloys Compd. 727, 168–176 (2017)CrossRefGoogle Scholar
  18. 18.
    C. Long, T. Li, H. Fan, Y. Wu, L. Zhou, Y. Li, L. Xiao, Y. Li, J. Alloys Compd. 658, 839–847 (2016)CrossRefGoogle Scholar
  19. 19.
    G. Liu, H. Fan, J. Xu, Z. Liu, Y. Zhao, RSC Adv. 6, 48708–48714 (2016)CrossRefGoogle Scholar
  20. 20.
    X. Liu, H. Fan, J. Shi, Q. Li, Sci. Rep. 5, 12699 (2015)CrossRefGoogle Scholar
  21. 21.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323–325 (2000)CrossRefGoogle Scholar
  22. 22.
    P. Leret, J.F. Fernandez, J. de Frutos, D. Fernández-Hevia, J. Eur. Ceram. Soc. 27, 3901–3905 (2007)CrossRefGoogle Scholar
  23. 23.
    Z. Yang, L. Zhang, X. Chao, L. Xiong, J. Liu, J. Alloys Compd. 509, 8716–8719 (2011)CrossRefGoogle Scholar
  24. 24.
    J. Boonlakhorn, P. Kidkhunthod, B. Putasaeng, P. Thongbai, Ceram. Int. 43, 2705–2711 (2017)CrossRefGoogle Scholar
  25. 25.
    S. Vangchangyia, T. Yamwong, E. Swatsitang, P. Thongbai, S. Maensiri, Ceram. Int. 39, 8133–8139 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Boonlakhorn, P. Kidkhunthod, P. Thongbai, S. Maensiri, Ceram. Int. 42, 8467–8472 (2016)CrossRefGoogle Scholar
  27. 27.
    Y.-H. Lin, J. Cai, M. Li, C.-W. Nan, J. He, Appl. Phys. Lett. 88, 172902 (2006)CrossRefGoogle Scholar
  28. 28.
    X. Ouyang, M. Habib, P. Cao, S. Wei, Z. Huang, W. Zhang, W. Gao, Ceram. Int. 41, 13447–13454 (2015)CrossRefGoogle Scholar
  29. 29.
    W. Hao, P. Xu, M. Wang, S. Yang, W. Yupeng, H. Wu, L. Sun, E. Cao, Y. Zhang, J. Alloys Compd. 740, 1159–1164 (2018)CrossRefGoogle Scholar
  30. 30.
    M. Li, G. Cai, D.F. Zhang, W.Y. Wang, W.J. Wang, X.L. Chen, J. Appl. Phys. 104, 074107 (2008)CrossRefGoogle Scholar
  31. 31.
    L. Ni, X.M. Chen, Solid State Commun. 149, 379–383 (2009)CrossRefGoogle Scholar
  32. 32.
    J. Boonlakhorn, P. Kidkhunthod, P. Thongbai, J. Eur. Ceram. Soc. 35, 3521–3528 (2015)CrossRefGoogle Scholar
  33. 33.
    P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Alloys Compd. 509, 7416–7420 (2011)CrossRefGoogle Scholar
  34. 34.
    E. Swatsitang, A. Niyompan, T. Putjuso, J. Mater. Sci.: Mater. Electron. 24, 3514–3520 (2013)Google Scholar
  35. 35.
    E. Jansen, W. Schäfer, G. Will, J. Appl. Crystallogr. 27, 492–496 (1994)CrossRefGoogle Scholar
  36. 36.
    J.-W. Lee, J.-H. Koh, Ceram. Int. 41, 10442–10447 (2015)CrossRefGoogle Scholar
  37. 37.
    S. Liu, X. Sun, B. Peng, H. Su, Z. Mei, Y. Huang, J. Deng, C. Su, L. Fang, L. Liu, J. Electroceram. 37, 137–144 (2016)CrossRefGoogle Scholar
  38. 38.
    J. Deng, L. Liu, X. Sun, S. Liu, T. Yan, L. Fang, B. Elouadi, Mater. Res. Bull. 88, 320–329 (2017)CrossRefGoogle Scholar
  39. 39.
    F. Han, S. Ren, J. Deng, T. Yan, X. Ma, B. Peng, L. Liu, J. Mater. Sci.: Mater. Electron. 28, 17378–17387 (2017)Google Scholar
  40. 40.
    G. Li, Z. Chen, X. Sun, L. Liu, L. Fang, B. Elouadi, Mater. Res. Bull. 65, 260–265 (2015)CrossRefGoogle Scholar
  41. 41.
    X. Sun, J. Deng, S. Liu, T. Yan, B. Peng, W. Jia, Z. Mei, H. Su, L. Fang, L. Liu, Appl. Phys. A 122, 864 (2016)CrossRefGoogle Scholar
  42. 42.
    Y. Huang, L. Liu, D. Shi, S. Wu, S. Zheng, L. Fang, C. Hu, B. Elouadi, Ceram. Int. 39, 6063–6068 (2013)CrossRefGoogle Scholar
  43. 43.
    S. Zheng, D. Shi, L. Liu, G. Li, Q. Wang, L. Fang, B. Elouadi, J. Mater. Sci.: Mater. Electron. 25, 4058–4065 (2014)Google Scholar
  44. 44.
    L. Sun, R. Zhang, Z. Wang, E. Cao, Y. Zhang, L. Ju, J. Alloys Compd. 663, 345–350 (2016)CrossRefGoogle Scholar
  45. 45.
    L. Singh, U.S. Rai, K.D. Mandal, A.K. Rai, Appl. Phys. A 112, 891–900 (2013)CrossRefGoogle Scholar
  46. 46.
    L. Singh, U.S. Rai, K.D. Mandal, J. Alloys Compd. 555, 176–183 (2013)CrossRefGoogle Scholar
  47. 47.
    J. Jumpatam, A. Mooltang, B. Putasaeng, P. Kidkhunthod, N. Chanlek, P. Thongbai, S. Maensiri, Ceram. Int. 42, 16287–16295 (2016)CrossRefGoogle Scholar
  48. 48.
    J. Deng, X. Sun, S. Liu, L. Liu, T. Yan, L. Fang, B. Elouadi, J. Adv. Dielectr. 06, 1650009 (2016)CrossRefGoogle Scholar
  49. 49.
    F. Han, J. Deng, X. Liu, T. Yan, S. Ren, X. Ma, S. Liu, B. Peng, L. Liu, Ceram. Int. 43, 5564–5573 (2017)CrossRefGoogle Scholar
  50. 50.
    X. liu, L. Liu, F. Han, S. Liu, H. Xiang, L. Fang, J. Mater. Sci.: Mater. Electron. 27, 12128–12133 (2016)Google Scholar
  51. 51.
    L. Liu, H. Fan, P. Fang, X. Chen, Mater. Res. Bull. 43, 1800–1807 (2008)CrossRefGoogle Scholar
  52. 52.
    L. Liu, H. Fan, X. Chen, P. Fang, J. Alloys Compd. 469, 529–534 (2009)CrossRefGoogle Scholar
  53. 53.
    X. Huang, H. Zhang, M. Wei, Y. Lai, J. Li, J. Alloys Compd. 708, 1026–1032 (2017)CrossRefGoogle Scholar
  54. 54.
    S. Jesurani, S. Kanagesan, M. Hashim, I. Ismail, J. Alloys Compd. 551, 456–462 (2013)CrossRefGoogle Scholar
  55. 55.
    S.-Y. Chung, I.-D. Kim, S.-J.L. Kang, Nat. Mater. 3, 774–778 (2004)CrossRefGoogle Scholar
  56. 56.
    P. Thongbai, J. Boonlakhorn, B. Putasaeng, T. Yamwong, S. Maensiri, J. Am. Ceram. Soc. 96, 379–381 (2013)Google Scholar
  57. 57.
    Y. Jiancong, L. Yuan-Hua, L. Huafei, C. Bo, N. Ce-Wen, J. Am. Ceram. Soc. 94, 1966–1969 (2011)CrossRefGoogle Scholar
  58. 58.
    L.J. Liu, L. Fang, Y.M. Huang, Y.H. Li, D.P. Shi, S.Y. Zheng, S.S. Wu, C.Z. Hu, J. Appl. Phys. 110, 6 (2011)Google Scholar
  59. 59.
    L. Liu, Y. Huang, Y. Li, D. Shi, S. Zheng, S. Wu, L. Fang, C. Hu, J. Mater. Sci. 47, 2294–2299 (2012)CrossRefGoogle Scholar
  60. 60.
    W. Somphan, P. Thongbai, T. Yamwong, S. Maensiri, Mater. Res. Bull. 48, 4087–4092 (2013)CrossRefGoogle Scholar
  61. 61.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153–2155 (2002)CrossRefGoogle Scholar
  62. 62.
    Q. Zheng, H. Fan, C. Long, J. Alloys Compd. 511, 90–94 (2012)CrossRefGoogle Scholar
  63. 63.
    J. Boonlakhorn, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Alloys Compd. 612, 103–109 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ekaphan Swatsitang
    • 1
    • 2
  • Krissana Prompa
    • 1
  • Thanin Putjuso
    • 3
  1. 1.Integrated Nanotechnology Research Center (INRC) and Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and StorageKhon Kaen UniversityKhon KaenThailand
  3. 3.School of General Science, Faculty of Liberal ArtsRajamangala University of Technology RattanakosinHua HinThailand

Personalised recommendations