Crystal structure and luminescence property of a single-phase white light emission phosphor Sr3YNa(PO4)3F:Dy3+

  • Zaifa YangEmail author
  • Changjian Ji
  • Gongnian Zhang
  • Guimei Han
  • Hui Wang
  • Hongxia Bu
  • Denghui Xu
  • Jiayue Sun


A series of single-phase Sr3YNa(PO4)3F:Dy3+ phosphors were successfully synthesized via a conventional solid state reaction process. The powder X-ray diffraction patterns were utilized to confirm the phase composite and crystal structure. The phosphor could be excited by the ultraviolet visible light in the region from 300 to 420 nm, and it shown two dominant emission bands peaking at 484 nm (blue light) and 580 nm (yellow light) which originated from the transitions of 4F9/26H15/2 and 4F9/26H13/2 of Dy3+, respectively. The optimum dopant concentration of Dy3+ ions was confirmed to be 7 mol% in Sr3YNa(PO4)3F:Dy3+ system and the concentration quenching mechanism is dipole–dipole interaction. The lifetime values of Dy3+ ions at different concentrations (x = 0.03, 0.05, 0.07, 0.09 and 0.11) were determined to be about 0.855, 0.759, 0.686, 0.606 and 0.546 ms, respectively. The thermal stability of luminescence of Sr3YNa(PO4)3F:0.07Dy3+ phosphor was also investigated and the activated energy was deduced to be 0.228 eV, which shows good thermal stability. The chromaticity coordinates fall in the white-light region calculated by the emission spectrum. These results show that Sr3YNa(PO4)3F:Dy3+ phosphor can be a promising white emitting phosphor for white LEDs.



This work was supported by National Natural Science Foundation of China (Nos. 21576002, 11604170 and 11747132), Natural Science Foundation of Shandong Province, China (No. ZR2014AQ018), Scientific Research in Universities of Shandong Province (No. J16LJ06).


  1. 1.
    R.J. Yu, D.S. Shin, K.W. Jang, Y. Guo, H.M. Noh, B.K. Moon, B.C. Choi, J.H. Jeong, S.S. Yi, Am. Ceram. Soc. 97, 2170 (2014)CrossRefGoogle Scholar
  2. 2.
    X. Chen, Z.G. Xia, Q.L. Liu, Dalton Trans. 43, 13370 (2014)CrossRefGoogle Scholar
  3. 3.
    V. Pushpa Manjari, C.R. Krishna, C.V. Reddy, S. Muntaz Begum, Y.P. Reddy, R.V.S.S.N. Ravikumar, J. Lumin. 145, 324 (2014)CrossRefGoogle Scholar
  4. 4.
    P. Remya Mohan, V. Vidyadharan, E. Sreeja, C. Joseph, N.V. Unnikrishnan, P.R. Biju, J. Mater. Sci. Mater. Electron. 28, 10250 (2017)CrossRefGoogle Scholar
  5. 5.
    Z.P. Yang, H.Y. Dong, X.S. Liang, C.C. Hou, L.P. Liu, F.C. Lu, Dalton Trans. 43, 11474 (2014)CrossRefGoogle Scholar
  6. 6.
    J.S. Kim, P.E. Jeon, J.C. Choi, H.L. Park, Appl. Phys. Lett. 84, 2931 (2004)CrossRefGoogle Scholar
  7. 7.
    Y.L. Liu, B.F. Lei, C.S. Shi, Chem. Mater. 17, 2108 (2005)CrossRefGoogle Scholar
  8. 8.
    S. Dutta, S. Som, S.K. Sharma, Dalton Trans. 42, 9654 (2013)CrossRefGoogle Scholar
  9. 9.
    D.H. Xu, Z.F. Yang, J.Y. Sun, X.D. Gao, J.N. Du, J. Mater. Sci. Mater. Electron. 27, 8370 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Xie, R. Pan., Opt. Mater. 35, 1162 (2013)CrossRefGoogle Scholar
  11. 11.
    I. Mayer, R. Roth, W. Brown, J. Solid State Chem. 11, 33 (1974)CrossRefGoogle Scholar
  12. 12.
    Y.H. Jin, Y.H. Hu, Y.R. Fu, L. Chen, G.F. Ju, Z.F. Mu, J. Mater. Chem. C. 3, 9435 (2015)CrossRefGoogle Scholar
  13. 13.
    Z.F. Yang, D.H. Xu, J.N. Du, X.D. Gao, J.Y. Sun, RSC Adv. 6, 87493 (2016)CrossRefGoogle Scholar
  14. 14.
    Y.H. Jin, Y. Lv, Y.H. Hu, L. Chen, G.F. Ju, Z.F. Mu, J. Lumin. 185, 106 (2017)CrossRefGoogle Scholar
  15. 15.
    B.J. Raja, M.R. Yadav, V. Pushpa Manjari, B. Babua, R.V.S.S.N. Ravikumar, C.R. Krishna. J. Mol. Struct. 1076, 461 (2014)CrossRefGoogle Scholar
  16. 16.
    M.R. Yadav, B.J. Raja, M. Avinash, R.V.S.S.N. Ravikumar. J. Mater. Sci. Mater. Electron. 27, 1318 (2016)CrossRefGoogle Scholar
  17. 17.
    Z.F. Yang, Y.M. Sun, Q.G. Xu, J.Y. Sun, J. Rare Earths 33, 1251 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. Tian, B.J. Chen, B.N. Tian, R.N. Hu, J.S. Sun, L.H. Cheng, H.Y. Zhong, X.P. Li, J.S. Zhang, Y.F. Zheng, T.T. Yu, L.B. Huang, Q.Y. Meng, J. Alloys Compd. 509, 6096 (2011)CrossRefGoogle Scholar
  19. 19.
    F.X. Liu, Y.Z. Fang, N. Zhang, G.Y. Zhao, Y.F. Liu, J. Mater. Sci. Mater. Electron. 26, 3933 (2015)CrossRefGoogle Scholar
  20. 20.
    L. Han, Y.M. Sun, J.Y. Sun, J. Rare earths 34, 12 (2016)CrossRefGoogle Scholar
  21. 21.
    J.Y. Wang, J.B. Wang, P. Duan, Mater. Lett. 107, 96 (2013)CrossRefGoogle Scholar
  22. 22.
    D.L. Dexter, J. Chem. Phys. 21, 836 (1953)CrossRefGoogle Scholar
  23. 23.
    L.G. Vanuitert, J. Electrochem. Soc. 114, 1048 (1967)CrossRefGoogle Scholar
  24. 24.
    K. Li, D.L. Geng, M.M. Shang, Y. Zhang, H.Z. Lian, J. Lin, J. Phys. Chem. C 118, 11026 (2014)CrossRefGoogle Scholar
  25. 25.
    Y.G. Su, T.T. Wang, X. Xin, L.J. Yan, M. Wang, X.J. Wang, Mater. Lett. 124, 85 (2014)CrossRefGoogle Scholar
  26. 26.
    Y.R. Shi, Y.H. Wang, Y. Wen, Z.Y. Zhao, B.T. Liu, Z.G. Yang, Opt. Express 20, 21656 (2012)CrossRefGoogle Scholar
  27. 27.
    W.R. Liu, C.H. Huang, C.W. Yeh, J.H. Tsai, Y.C. Chiu, Y.T. Yeh, R.S. Liu, Inorg. Chem. 51, 9636 (2012)CrossRefGoogle Scholar
  28. 28.
    C.S. Mccamy, Color Res. Appl. 17, 142 (1992)CrossRefGoogle Scholar
  29. 29.
    Q.Y. Shao, H.J. Li, Y. Dong, J.Q. Jiang, C. Liang, J.H. He, J. Alloys Compd. 498, 199 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Physics and Electronic EngineeringQilu Normal UniversityJinanPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringQilu Normal UniversityJinanPeople’s Republic of China
  3. 3.School of ScienceBeijing Technology and Business UniversityBeijingPeople’s Republic of China

Personalised recommendations