Advertisement

Effect of Dy, Pr on microwave absorption properties of Ce2Co17 alloy

  • Yu He
  • Shunkang Pan
  • Lichun Cheng
  • Jialiang Luo
  • Yongqiang Xu
  • Jingjing Yu
  • Junqing Chang
Article
  • 35 Downloads

Abstract

The RexCe2−xCo17 (Re = Dy, Pr, x = 0, 0.1, 0.2, 0.4) alloy was prepared by a combination use method of arc melting and high-energy ball milling and the phase structure, morphology and electromagnetic parameters were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vector network analyzer (VNA), respectively. The consequences demonstrate that the particle size has a decreasing tendency and the minimum absorption peak frequency offsets to a low frequency band with increasing Re (Dy, Pr). The reflectivity of DyxCe2−xCo17 (x = 0, 0.1, 0.2, 0.4) alloy increase first and then decrease with the addition of Dy content, and the Dy0.2Ce1.8Co17 alloy can achieve the minimum RL of − 39.16 dB (microwave absorption rate 99.988%) at 8 GHz with the thickness of 1.8 mm. The microwave absorbing properties of PrxCe2−xCo17 (x = 0, 0.1, 0.2, 0.4) alloy can be optimized with the doping of Pr and the minimum RL of Pr0.2Ce1.8Co17 can reach to − 36.8 dB (microwave absorption rate 99.979%) at 7.92 GHz, and the bandwidth of R < − 10 dB is 2.24 GHz with the best matching thickness condition of 1.8 mm.

Notes

Acknowledgements

Project supported by the National Natural Science Foundation of China (51361007), 2017 director fund of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing (GXKL06170107), Guangxi Key Laboratory of Information Materials (161010-Z) and Innovation Project of GUET Graduate Education (2018YJCX87).

References

  1. 1.
    L.B. Kong, Z.W. Li, L. Liu, R. Huang, M. Abshinova, Z.H. Yang, C.B. Tang, P.K. Tan, R. Deng C, Int. Mater. Rev. 58, 203–259 (2013)CrossRefGoogle Scholar
  2. 2.
    F. Jiang, J. Zheng, L. Liang, M. Zhang, Y. Wang, J. Mater. Sci: Mater Electron 26, 2243–2247 (2015)Google Scholar
  3. 3.
    T.C. Zou, H.P. Li, N.Q. Zhao, C.S. Shi, Bull. Mater. Sci. 36, 213–216 (2013)CrossRefGoogle Scholar
  4. 4.
    Y. Liu, Y.Y. Li, F. Luo, X.L. Su, J. Xu, J.B. Wang, X.H. He, Y.M. Shi, J. Mater. Sci: Mater Electron. 28, 6619–6627 (2017)Google Scholar
  5. 5.
    J.L. Xie, M.G. Han, L. Chen, R.X. Kuang, L.J. Deng, J. Magn. Magn. Mater. 314, 37–42 (2007)CrossRefGoogle Scholar
  6. 6.
    C.L. Hou, T.H. Li, T.K. Zhao, H.G. Liu, L.H. Liu, W.J. Zhang, New. Carbon. Mater. 28(3), 184–190 (2013)CrossRefGoogle Scholar
  7. 7.
    Y. Nie, H.H. He, Z.S. Zhao, R.Z. Gong, H.B. Yu, J. Magn. Magn. Mater. 306, 125–129 (2006)CrossRefGoogle Scholar
  8. 8.
    X. Wang, R.Z. Gong, P.G. Li, L.Y. Liu, W.M. Cheng, Mater. Sci. Eng. A. 466, 178 (2007)CrossRefGoogle Scholar
  9. 9.
    H.J. Yang, W.Q. Cao, D.Q. Zhang, T.J. Su, H.L. Shi, W.Z. Wang, J. Yuan, M.S. Cao, ACS. Appl. Mater. Inter. 7, 7073–7077 (2015)CrossRefGoogle Scholar
  10. 10.
    F. Wen, F. Zhang, J. Xiang, W. Hu, S. Yuan, Z. Liu, J. Magn. Magn. Mater. 343, 281 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Zhou, Z.H. Zhu, C. Xiong, J. Electron. Mater. 47, 1244–1249 (2018)CrossRefGoogle Scholar
  12. 12.
    H.X. Gu, Thesis MSc, Preparation and Electromagnetic Properties of Co-Based Magnetic Absorbing Materials, Nanjing University of Posts and Telecommunications (2016)Google Scholar
  13. 13.
    A. Bastos, S. Zaefferer, D. Raabe, J. Microsc. 230, 487–498 (2008)CrossRefGoogle Scholar
  14. 14.
    M.A. Ahmed, N. Okasha, R.M. Kershi, J. Magn. Magn. Mater. 320, 1146 (2008)CrossRefGoogle Scholar
  15. 15.
    X.G. Huang, J. Chen, L.X. Wang, Q.T. Zhang, Rare Met. 30, 44 (2011)CrossRefGoogle Scholar
  16. 16.
    K. Yanagimoto, K. Majima, S. Sunada, J. Jpn. Soc. Powder. Met. 51, 293–296 (2004)CrossRefGoogle Scholar
  17. 17.
    Q. Kang, New Microwave Absorbing Materials (Science Press, Beijing, 2006) pp. P1–P15Google Scholar
  18. 18.
    S.B. Liao, Ferromagnetic (part II) (Science Press, Beijing, 1988) pp. 3–88Google Scholar
  19. 19.
    Z.Q. Qiao, S.K. Pan, J.L. Xiong, L.C. Cheng, P.H. Lin, J.L. Luo, J. Electron. Mater. 46(1), 660–667 (2017)CrossRefGoogle Scholar
  20. 20.
    L. Zhen, Y.X. Gong, J.T. Jiang, W.Z. Shao, J. Appl. Phys. 104(3), 034312 (2017)CrossRefGoogle Scholar
  21. 21.
    X.X. Wang, T. Ma, J.C. Shu, M.S. Cao, Chem. Eng. J. 15(332), 321–330 (2018)Google Scholar
  22. 22.
    Z.T. Zhu, X. Sun, G.X. Li, H.R. Xue, H. Guo, X.L. Fan, X.C. Pan, J. Magn. Magn. Mater. 377, 95–103 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Li, G.Z. Xie, P.C. Ji, J. Qu, J.W. Chen, J. Chen, J. Magn. Magn. Mater. 443, 85–88 (2017)CrossRefGoogle Scholar
  24. 24.
    R.C. Hu, G.G. Tan, X.S. Gu, S.W. Chen, C.G. Wu, Q.K. Man, C.T. Chang, X.M. Wang, R.W. Li, S.L. Che, L.Q. Jiang, J. Alloys. Compd. 730, 255–260 (2018)CrossRefGoogle Scholar
  25. 25.
    J. Song, L.X. Wang, N.C. Xu, Q.T. Zhang, J. Rare. Earth. 28, 451 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yu He
    • 1
  • Shunkang Pan
    • 1
  • Lichun Cheng
    • 1
    • 2
  • Jialiang Luo
    • 1
  • Yongqiang Xu
    • 1
  • Jingjing Yu
    • 1
  • Junqing Chang
    • 1
  1. 1.School of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  2. 2.School of Materials and EngineeringCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations