Cathodic electrosynthesis of CuFe2O4/CuO composite nanostructures for high performance supercapacitor applications

  • Nasrin Ghassemi
  • Saied Saeed Hosseiny DavaraniEmail author
  • Hamid Reza Moazami


In this work, CuFe2O4/CuO nanocomposites have been synthesized by galvanostatic cathodic electrodeposition. The obtained nanocomposites were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Fourier Transform Infrared, and Brunauer–Emmett–Teller surface area analysis. The electrochemical properties of CuFe2O4/CuO nanocomposites were evaluated by cyclic voltammetry, galvanostatic charge–discharge cycling, and electrochemical impedance spectroscopy in 1.0 M KOH. The CuFe2O4/CuO nanocomposites have shown the high specific capacitance of 322.49 F g−1 at the scan rate of 1 mV s−1. After 5000 cycles, 92% of this specific capacitance was retained. Although the prepared nanocomposite has shown a mediocre specific capacitance compared to other metal oxide-based materials, the low cost of the starting materials and the ease of preparation make this nanocomposite a good candidate for supercapacitor applications.


  1. 1.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, J. Guo, T. Wang, J. Shao, D. Wang, Y.-W. Yang, J. Nanomater. 5, 1667–1689 (2015)CrossRefGoogle Scholar
  3. 3.
    M.S. Halper, J.C. Ellenbogen, MITRE Nanosystems Group (2006)Google Scholar
  4. 4.
    B. Vidyadharan, I.I. Misnon, J. Ismail, M.M. Yusoff, R. Jose, J. Alloys Compd. 633, 22–30 (2015)CrossRefGoogle Scholar
  5. 5.
    C.D. Lokhande, D.P. Dubal, O.-S. Joo, Curr. Appl. Phys. 11, 255–270 (2011)CrossRefGoogle Scholar
  6. 6.
    G.M. Gouda, C.L. Nagendra, In: Proceedings of IEEE 1st International Symposium on Physics and Technology of Sensors (ISPTS), 2012, pp. 125–128Google Scholar
  7. 7.
    L.G. Gerling, S. Mahato, A. Morales-Vilches, G. Masmitja, P. Ortega, C. Voz, R. Alcubilla, J. Puigdollers, Sol. Energy Mater. Sol. Cells 145, 109–115 (2016)CrossRefGoogle Scholar
  8. 8.
    R. Katwal, H. Kaur, G. Sharma, M. Naushad, D. Pathania, Ind. Eng. Chem. Res. 31, 173–184 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Wu, G. Wu, Y. Ren, X. Li, L. Wang, Chem. Eur. J. 22, 8864–8871 (2016)CrossRefGoogle Scholar
  10. 10.
    R.L. Kalyani, J. Venkatraju, P. Kollu, N.H. Rao, S.V.N. Pammi, Korean J. Chem. Eng. 32, 911–916 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Wu, G. Wu, L. Wang, Powder Technol. 269, 443–451 (2015)CrossRefGoogle Scholar
  12. 12.
    G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, J. Alloys Compd. 652, 346–350 (2015)CrossRefGoogle Scholar
  13. 13.
    G. Wu, Y. Cheng, Q. Xie, Z. Jia, F. Xiang, H. Wu, Mater. Lett. 144, 157–160 (2015)CrossRefGoogle Scholar
  14. 14.
    G. Wu, Y. Cheng, F. Xiang, Z. Jia, Q. Xie, G. Wu, H. Wu, Mater. Sci. Semicond. Process. 41, 6–11 (2016)CrossRefGoogle Scholar
  15. 15.
    A. El Sayed, M. Shaban, Spectrochim. Acta A 149, 638–646 (2015)CrossRefGoogle Scholar
  16. 16.
    P. Bera, A.L. Cámara, A. Hornés, A. Martínez-Arias, J. Phys. Chem. C 113, 10689–10695 (2009)CrossRefGoogle Scholar
  17. 17.
    J. Chen, K. Wang, L. Hartman, W. Zhou, J. Phys. Chem. C 112, 16017–16021 (2008)CrossRefGoogle Scholar
  18. 18.
    K.P. Musselman, A. Wisnet, D.C. Iza, H.C. Hesse, C. Scheu, J.L. MacManus-Driscoll, L. Schmidt-Mende, J. Adv. Mater. 22, 254–258 (2010)CrossRefGoogle Scholar
  19. 19.
    M. Dar, Y. Kim, W. Kim, J. Sohn, H. Shin, Appl. Surf. Sci. 254, 7477–7481 (2008)CrossRefGoogle Scholar
  20. 20.
    L. Chen, N. Lu, C. Xu, H. Yu, T. Wang, Electrochim. Acta 54, 4198–4201 (2009)CrossRefGoogle Scholar
  21. 21.
    S. Qu, Y. Yu, K. Lin, P. Liu, C. Zheng, L. Wang, T. Xu, Z. Wang, H. Wu, J. Mater. Sci.: Mater. Electron. 29, 1232–1237 (2018)Google Scholar
  22. 22.
    D. Gao, G. Yang, J. Li, J. Zhang, J. Zhang, D. Xue, J. Phys. Chem. C. 114, 18347–18351 (2010)CrossRefGoogle Scholar
  23. 23.
    J. Chen, F. Zhang, J. Wang, G. Zhang, B. Miao, X. Fan, D. Yan, P. Yan, J. Alloys Compd. 454, 268–273 (2008)CrossRefGoogle Scholar
  24. 24.
    H.A.C.F. Bayansal, S. Kahraman, H.M. Cakmak, H.S. Guder, Ceram. Int. 38, 1859–1866 (2012)CrossRefGoogle Scholar
  25. 25.
    H.C. Song, S.H. Park, Y.D. Huh, Bull. Korean Chem. Soc. 28, 477 (2007)CrossRefGoogle Scholar
  26. 26.
    P. Mallick, S. Sahu, Nano Sci. Nanotechnol. 2, 71–74 (2012)Google Scholar
  27. 27.
    Y. Lu, H. Yan, K. Qiu, J. Cheng, W. Wang, X. Liu, C. Tang, J.K. Kim, Y. Luo, RSC Adv. 5, 10773–10781 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Ma, C. Fang, B. Ding, G. Ji, J.Y. Lee, Adv. Mater. 25, 4646–4652 (2013)CrossRefGoogle Scholar
  29. 29.
    H. Darjazi, S.S.H. Davarani, H.R. Moazami, T. Yousefi, F. Tabatabaei, Prog. Nat. Sci. 26, 523–527 (2016)CrossRefGoogle Scholar
  30. 30.
    P. Sarkar, P.S. Nicholson, J. Am. Ceram. Soc. 79, 1987–2002 (1996)CrossRefGoogle Scholar
  31. 31.
    A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solutions (CRC Press, 1985)Google Scholar
  32. 32.
    A.S. Rahman, M.A. Islam, K.M. Shorowordi, Procedia Eng. 105, 679–685 (2015)CrossRefGoogle Scholar
  33. 33.
    Q.T. Pham, Y.I. Lee, J. Mater. Chem. C 3, 7720–7726 (2015)CrossRefGoogle Scholar
  34. 34.
    M.M. Petrović, I.J. Slipper, M.D. Antonijević, G.S. Nikolić, J.Z. Mitrović, D.V. Bojić, A.L. Bojić, J. Taiwan Inst. Chem. Eng. 50, 282–287 (2015)CrossRefGoogle Scholar
  35. 35.
    N. Nagarajan, H. Humadi, I. Zhitomirsky, Electrochim. Acta 51, 3039–3045 (2006)CrossRefGoogle Scholar
  36. 36.
    H.R. Moazami, S.S.H. Davarani, T. Yousefi, H. Darjazi, Mater. Sci. Semicond. Process. 38, 240–248 (2015)CrossRefGoogle Scholar
  37. 37.
    H.R. Moazami, S.S.H. Davarani, T. Yousefi, A.R. Keshtkar, Mater. Sci. Semicond. Process. 30, 682–687 (2015)CrossRefGoogle Scholar
  38. 38.
    B. Ameri, S.S.H. Davarani, H.R. Moazami, H. Darjazi, J. Alloys Compd. 720, 408–416 (2017)CrossRefGoogle Scholar
  39. 39.
    J.-K. Lee, G.-P. Kim, I.K. Song, S.-H. Baeck, Electrochem. Commun. 11, 1571–1574 (2009)CrossRefGoogle Scholar
  40. 40.
    M. Aghazadeh, M.R. Ganjali, J. Mater. Sci.: Mater. Electron. 28, 8144–8154 (2017)Google Scholar
  41. 41.
    L. Zhang, B. Liu, N. Zhang, M. Ma, Nano Res. 11, 323–333 (2018)CrossRefGoogle Scholar
  42. 42.
    I. Zhitomirsky, L. Gal-Or, Mater. Lett. 31, 155–159 (1997)CrossRefGoogle Scholar
  43. 43.
    I. Zhitomirsky, Adv. Colloid Interface Sci. 97, 279–317 (2002)CrossRefGoogle Scholar
  44. 44.
    O. Çakır, H. Temel, M. Kiyak, J. Mater. Process. Technol. 162, 275–279 (2005)CrossRefGoogle Scholar
  45. 45.
    A.B. Laursen, A.S. Varela, F. Dionigi, H. Fanchiu, C. Miller, O.L. Trinhammer, J. Rossmeisl, S. Dahl, J. Chem. Educ. 89, 1595–1599 (2012)CrossRefGoogle Scholar
  46. 46.
    B. Ameri, S.S.H. Davarani, R. Roshani, H.R. Moazami, A. Tadjarodi, J. Alloys Compd. 695, 114–123 (2017)CrossRefGoogle Scholar
  47. 47.
    R. Srivastava, M.U. Anu Prathap, R. Kore, Colloids Surf. A 392, 271–282 (2011)CrossRefGoogle Scholar
  48. 48.
    P.M. Kulal, D.P. Dubal, C.D. Lokhande, V.J. Fulari, J. Alloys Compd. 509, 2567–2571 (2011)CrossRefGoogle Scholar
  49. 49.
    Y.X. Zhang, M. Huang, M. Kuang, C.P. Liu, J.L. Tan, M. Dong, Y. Yuan, X.L. Zhao, Z. Wen, Int. J. Electrochem. Sci. 8, 1366–1381 (2013)Google Scholar
  50. 50.
    L. Lai, H. Yang, L. Wang, B.K. Teh, J. Zhong, H. Chou, L. Chen, W. Chen, Z. Shen, R.S. Ruoff, J. Lin, ACS Nano 6, 5941–5951 (2012)CrossRefGoogle Scholar
  51. 51.
    Y.Q. Zhang, L. Li, S.J. Shi, Q.Q. Xiong, X.Y. Zhao, X.L. Wang, C.D. Gu, J.P. Tu, J. Power Sources 256, 200–205 (2014)CrossRefGoogle Scholar
  52. 52.
    D. Dubal, D. Dhawale, R. Salunkhe, V. Jamdade, C. Lokhande, J. Alloys Compd. 492, 26–30 (2010)CrossRefGoogle Scholar
  53. 53.
    G. Navathe, D. Patil, P. Jadhav, D. Awale, A. Teli, S. Bhise, S. Kolekar, M. Karanjkar, J. Kim, P. Patil, J. Electroanal. Chem. 738, 170–175 (2015)CrossRefGoogle Scholar
  54. 54.
    D.-W. Kim, K.-Y. Rhee, S.-J. Park, J. Alloys Compd. 530, 6–10 (2012)CrossRefGoogle Scholar
  55. 55.
    J.S. Shaikh, R.C. Pawar, N.L. Tarwal, D.S. Patil, P.S. Patil, J. Alloys Compd. 509, 7168–7174 (2011)CrossRefGoogle Scholar
  56. 56.
    Y. Lu, H. Huang, X. Peng, Electrochim. Acta 104, 289–294 (2013)CrossRefGoogle Scholar
  57. 57.
    D.P. Dubal, G.S. Gund, C.D. Lokhande, R. Holze, Mater. Res. Bull. 48, 923–928 (2013)CrossRefGoogle Scholar
  58. 58.
    D.P. Dubal, N.R. Chodankar, G.S. Gund, R. Holze, C.D. Lokhande, P. Gomez-Romero, Energy Technol. 3, 168–176 (2015)CrossRefGoogle Scholar
  59. 59.
    Y. Fan, P.F. Liu, Z.J. Yang, Ionics 21, 185–190 (2015)CrossRefGoogle Scholar
  60. 60.
    X.L. Guo, G. Li, M. Kuang, L. Yu, Y.X. Zhang, Electrochim. Acta 174, 87–92 (2015)CrossRefGoogle Scholar
  61. 61.
    S.K. Shinde, D.P. Dubal, G.S. Ghodake, V.J. Fulari, RSC Adv. 5, 4443–4447 (2015)CrossRefGoogle Scholar
  62. 62.
    K. Wang, X. Dong, C. Zhao, X. Qian, Y. Xu, Electrochim. Acta 152, 433–442 (2015)CrossRefGoogle Scholar
  63. 63.
    T. Wen, X.L. Wu, S. Zhang, X. Wang, A.W. Xu, Chem. Asian 10, 595–601 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of ChemistryShahid Beheshti University, G. C.TehranIran
  2. 2.Physics and Accelerators Research SchoolNuclear Science Technology Research Institute (NSTRI)TehranIran

Personalised recommendations