Electronic and optoelectronic properties of Al/coumarin doped Pr2Se3–Tl2Se/p-Si devices

  • A. Tataroğlu
  • C. Ahmedova
  • G. Barim
  • Abdullah G. Al-Sehemi
  • Abdulkerim KarabulutEmail author
  • Ahmed A. Al-Ghamdi
  • W. A. Farooq
  • F. Yakuphanoglu


In this study, coumarin-doped Pr2Se3–Tl2Se (0.00, 0.05, 0.1, 0.3 wt% coumarin) were covered on the front side of a p-Si substrate by drop coating method and thus Al/coumarin doped Pr2Se3–Tl2Se/p-Si diodes were fabricated. The electronic and optoelectronic properties of the prepared diodes were investigated. The highest rectification ratio (RR = IF/IR) value was found to be 2.24 × 105 for the diode having 0.05 wt% coumarin doping at dark and ± 5 V. Also, the highest Iphoto/Idark photosensitivity was found to be 1327 for the diode which has 0.1 wt% coumarin doping at 100 mW/cm2 and − 5 V. The photocurrent of the diodes is higher than the dark current and increases by the increase of the light intensity. These results confirm that the fabricated diodes show a strong photovoltaic behavior. The electronic parameters of the diodes, for example ideality factor and barrier height values, were calculated by the use of current–voltage characteristics. The transient measurement proves that the diodes show both photodiode and photocapacitor behaviors. The change on the conductance and capacitance by the frequency is attributed to the existence of interface states. Thus, the obtained results suggest that the prepared diodes might be used as a photosensor in the applications of optoelectronic.



The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP# 0046.


  1. 1.
    J. Broser, R. Broser-Warminsky, in Proceedings of the International Conference on Luminescence of Organic and Inorganic Materials, (Wiley, New York, 1962), pp. 402–407Google Scholar
  2. 2.
    C.A. Veliev, Se-TlPrSe3 phase diagram. Inorg. Mater. 46, 1057–1060 (2010)CrossRefGoogle Scholar
  3. 3.
    G.M. Kuz’micheva, I.A. Matveenko, Crystal chemistry of rare-earth chalcogenides. Russ. J. Coord. Chem. 27, 73–84 (2001)CrossRefGoogle Scholar
  4. 4.
    L. Petit, Z. Szotek, M. Lüders, A. Svane, Rare-earth pnictides and chalcogenides from first-principles. J. Phys. Condens. Matter 28, 223001 (2016)CrossRefGoogle Scholar
  5. 5.
    J.L. Adam, X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead, Cambridge, 2014), pp. 65–309Google Scholar
  6. 6.
    Dzh.A. Veliev (Akhmedova), I.I. Aliev, Tl2S3–Pr2S3 system. Zh. Neorg. Khim. 49, 1902–1904 (2004)Google Scholar
  7. 7.
    Dzh.A. Veliev (Akhmedova), Phase equilibria in the Tl2Se3–Pr2Se3 system. Zh. Khim. Probl. 4, 65–68 (2003)Google Scholar
  8. 8.
    C. Veliyev, A. Çoban, Interaction in the TlSe-Pr2Se3 system. Russ. J. Inorg. Chem. 59, 11–14 (2014)CrossRefGoogle Scholar
  9. 9.
    Dzh.A. Veliyev (Akhmedova), I.I. Aliev, TL2S3-PR2S3 system. Russ. J. Inorg. Chem. 49, 1769–1771 (2004)Google Scholar
  10. 10.
    Physicochemical Properties of Semiconducting Substances (Handbook), (Nauka, Moscow, 1979)Google Scholar
  11. 11.
    E.I. Yarembash, A.A. Eliseev, Chalcogenides of Rare-Earth Element, (Nauka, Moscow, 1975)Google Scholar
  12. 12.
    A. Ghouili, M. Dusek, V. Petricek, T.B. Ayed, R.B. Hassen, Synthesis, crystal structure and spectral characteristics of highly fluorescent chalcone-based coumarin in solution and in polymer matrix. J. Phys. Chem. Solids 75, 188–193 (2014)CrossRefGoogle Scholar
  13. 13.
    U.S. Raikar, C.G. Renuka, Y.F. Nadaf, B.G. Mulimani, Steady-state, time-resolved fluorescence polarization behaviour and determination of dipole moments of coumarin laser dye. J. Mol. Struct. 787, 127–130 (2006)CrossRefGoogle Scholar
  14. 14.
    A. Mekki, R.O. Ocaya, A. Dere, A.A. Al-Ghamdi, K. Harrabi, F. Yakuphanoglu, New photodiodes based graphene-organic semiconductor hybrid materials. Synth. Met. 213, 47–56 (2016)CrossRefGoogle Scholar
  15. 15.
    E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarendon, Oxford, 1988)Google Scholar
  16. 16.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)Google Scholar
  17. 17.
    J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press, New York, 2003)CrossRefGoogle Scholar
  18. 18.
    I. Yun, Photodiodes-from Fundamentals to Applications (InTech, Croatia, 2012)CrossRefGoogle Scholar
  19. 19.
    G.-F. Dalla Betta, Advances in Photodiodes, (InTech, Rijeka, 2011)CrossRefGoogle Scholar
  20. 20.
    A. Dere, A. Tataroglu, A.G. Al-Sehemi, A.A. Al-Ghamdi, F. Farid El-Tantawy, W.A. Farooq, F. Yakuphanoglu, A functional material based photodiode for solar tracking systems. Physica B 520, 76–81 (2017)CrossRefGoogle Scholar
  21. 21.
    K. Mensah-Darkwa, R. Ocaya, A. Dere, A.G. Al-Sehemi, A.A. Al-Ghamdi, M. Soylu, R.K. Gupta, F. Yakuphanoglu, Dye based photodiodes for solar energy applications. Appl. Phys. A 123, 622 (2017)CrossRefGoogle Scholar
  22. 22.
    N.A. Al-Ahmadi, F.A. Ebrahim, H.A. Al-Jawhari, R.H. Mari, M. Henini, Impact of doping on the performance of p-type Be-doped Al0.29 Ga0.71As Schottky diodes. Modern Electron. Mater. 3, 66–71 (2017)CrossRefGoogle Scholar
  23. 23.
    C.S. Guclu, A.F. Ozdemir, S. Altındal, Double exponential I–V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS)-type Schottky barrier diodes in wide temperature range. Appl. Phys. A 122, 1032 (2016)CrossRefGoogle Scholar
  24. 24.
    A. Turut, A. Karabulut, K. Ejderha, N. Bıyıklı, Capacitance–conductance characteristics of Au/Ti/Al2O3/n-GaAs structures with very thin Al2O3 interfacial layer. Mater. Res. Express 2, 46301 (2015)CrossRefGoogle Scholar
  25. 25.
    M. İlhan, Electrical characterization of Al/fluorescein sodium salt organic semiconductor/Au diode by current-voltage and capacitance-voltage methods. J. Mater. Electron. Device. 1, 15–20 (2017)Google Scholar
  26. 26.
    R. Al-Wafi, Optoelectronic properties of Al/n-Si/Bi4Ti3O12/Au photosensor. Silicon 9, 657–661 (2017)CrossRefGoogle Scholar
  27. 27.
    M.S. Pratap Reddy, K. Sreenu, V. Rajagopal Reddy, C. Park, Modified electrical properties and transport mechanism of Ti/p-InP Schottky structure with a polyvinylpyrrolidone (PVP) polymer interlayer. J. Mater. Sci.: Mater. Electron. 28, 4847–4855 (2017)Google Scholar
  28. 28.
    D. Donoval, M. Barus, M. Zdimal, Analysis of I–V measurements on PtSi-Si Schottky structures in a wide temperature range. Solid-State Electron. 34, 1365–1373 (1991)CrossRefGoogle Scholar
  29. 29.
    A. Tataroglu, A.A. Hendi, R.H. Alorainy, F. Yakuphanoglu, A new aluminum iron oxide Schottky photodiode designed via sol-gel coating method. Chin. Phys. B 23, 057504 (2014)CrossRefGoogle Scholar
  30. 30.
    I.S. Yahia, A.A.M. Farag, F. Yakuphanoglu, W.A. Farooq, Temperature dependence of electronic parameters of organic Schottky diode based on fluorescein sodium salt. Synth. Met. 161, 881–887 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Rose, Concepts in Photoconductivity (Interscience, New York, 1963)Google Scholar
  32. 32.
    S. Kazim, V. Alia, M. Zulfequar, M.M. Haq, M. Husain, Electrical transport properties of poly[2-methoxy-5-(2′-ethyl hexyloxy)-1,4-phenylene vinylene] thin films doped with acridine orange dye. Physica B 393, 310–315 (2007)CrossRefGoogle Scholar
  33. 33.
    B. Anwer, A. Karabulut, A. Yildiz, F. Yakuphanoglu, Solar light responsive ZnO nanoparticles adjusted using Cd and La Co-dopant photodetector. J. Alloys Compd. 732, 16–24 (2018)CrossRefGoogle Scholar
  34. 34.
    A. Dere, A novel quaternary chalcogenide KBiCu2S3 based linear-dynamic-range optoelectronic device for optic communications systems, Physica B 545, 30–33 (2018)CrossRefGoogle Scholar
  35. 35.
    R.H. Bube, Photoconductivity of Solids (Wiley, New York, 1960)Google Scholar
  36. 36.
    A. Tataroğlu, A.G. Al-Sehemi, M. Özdemir, R. Özdemir, H. Usta, A. Ahmed, W.A. Al-Ghamdi, F. Farooq, Yakuphanoglu, Frequency and electric field controllable photodevice: FYTRONIX device. Physica B 519, 53–58 (2017)CrossRefGoogle Scholar
  37. 37.
    M. Zhang, Y. Xu, J. Lv, L. Yang, X. Jiang, G. He, X. Song, Z. Sun, Capability of coupled CdSe/TiO2 heterogeneous structure for photocatalytic degradation and photoconductivity. Nanoscale Res. Lett. 9, 636 (2014)CrossRefGoogle Scholar
  38. 38.
    J.C. Moore, C.V. Thompson, A phenomenological model for the photocurrent transient relaxation observed in ZnO-based photodetector devices. Sensors 13, 9921–9940 (2013)CrossRefGoogle Scholar
  39. 39.
    W. Khan, S.-D. Kim, Ultra-violet photo-response characteristics of p-Si/i-SiO2/n-ZnO heterojunctions based on hydrothermal ZnO nanorods. Mater. Sci. Semicond. Process. 66, 232–240 (2017)CrossRefGoogle Scholar
  40. 40.
    F. Yakuphanoglu, K. Mensah-Darkwa, A.A. Al-Ghamdi, R.K. Gupta, W.A. Farooq, Novel organic doped inorganic photosensors. Microelectron. Eng. 160, 27–33 (2016)CrossRefGoogle Scholar
  41. 41.
    E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 1982)Google Scholar
  42. 42.
    R. Padma, K. Sreenu, V.R. Reddy, Electrical and frequency dependence characteristics of Ti/polyethylene oxide (PEO)/p-type InP organic-inorganic Schottky junction. J. Alloys Compd. 695, 2587–2596 (2017)CrossRefGoogle Scholar
  43. 43.
    A. Tataroglu, O. Dayan, N. Ozdemir, Z. Serbetci, A.A. Al-Ghamdi, A. Dere, F. El-Tantawy, F. Yakuphanoglu, Single crystal ruthenium(II) complex dye based photodiode. Dyes Pigments 132, 64–71 (2016)CrossRefGoogle Scholar
  44. 44.
    E.H. Nicollian, A. Goetzberger, A.D. Lopez, Expedient method of obtaining interface state properties from MIS conductance measurements. Solid State Electron. 12, 937–944 (1969)CrossRefGoogle Scholar
  45. 45.
    M.S. Pratap Reddy, P.T. Puneetha, Y.-Woong Lee, S.-Hoon Jeong, C. Park, Effect of illumination and frequency dependent series resistance and interface state densities on the electrical properties of DNA-CTMA/p-GaN bio-hybrid Schottky photodiode. Polym. Test. 59, 107–112 (2017)CrossRefGoogle Scholar
  46. 46.
    S. Demirezen, İ Orak, Y. AzizianKalandaragh, Ş Altındal, Series resistance and interface states effects on the C–V and G/w–V characteristics in Au/(Co3O4-doped PVA)/n-Si structures at room temperature. J. Mater. Sci.: Mater. Electron. 28, 12967–12976 (2017)Google Scholar
  47. 47.
    R.O. Ocaya, A. Al-Ghamdi, K. Mensah-Darkwa, R.K. Gupta, W. Farooq, F. Yakuphanoglu, Organic photodetector with coumarin-adjustable photocurrent. Synth. Met. 213, 65–72 (2016)CrossRefGoogle Scholar
  48. 48.
    E.H. Nicollian, A. Goetzberger, The Si-SiO2 Interface—electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst. Tech. J. 46, 1055–1133 (1967)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Tataroğlu
    • 1
  • C. Ahmedova
    • 2
  • G. Barim
    • 2
  • Abdullah G. Al-Sehemi
    • 3
    • 4
    • 5
  • Abdulkerim Karabulut
    • 6
    Email author
  • Ahmed A. Al-Ghamdi
    • 7
  • W. A. Farooq
    • 8
  • F. Yakuphanoglu
    • 9
  1. 1.Department of Physics, Faculty of ScienceGazi UniversityAnkaraTurkey
  2. 2.Faculty of Arts and SciencesAdiyaman UniversityAdiyamanTurkey
  3. 3.Department of Chemistry, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  4. 4.Research Center for Advanced Materials ScienceKing Khalid UniversityAbhaSaudi Arabia
  5. 5.Unit of Science and Technology, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  6. 6.Department of Electrical and Electronics Engineering, Faculty of EngineeringSinop UniversitySinopTurkey
  7. 7.Department of Physics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  8. 8.Department of Physics and Astronomy, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  9. 9.Department of Physics, Faculty of ScienceFirat UniversityElazigTurkey

Personalised recommendations