Optical humidity sensor based on in situ and ex situ synthesized nAg/0.1%PVP composite coated on self supported PVP substrate

  • Poonam D. Mahapure
  • S. A. Gangal
  • R. C. Aiyer
  • S. W. Gosavi


An optical based humidity sensor having linear response (R2 = 0.99) over a wide range (06–94%RH) and high sensitivity is reported using nAg/0.1%PVP nanocomposite. Nanocomposite is prepared using in-situ and ex-situ approaches by chemical reduction method with silver salt (AgNO3) as precursor, tri sodium citrate as reducing agent and PVP as capping agent. The nanocomposite is dip coated on hydrophilic PVP substrate of 80 µm thickness. The material is characterized by using UV–Vis, TEM and FTIR techniques. UV–Vis and TEM analysis are complementary to each other for exhibiting dependence of particle size on preparation approach − 10 nm (in-situ) to 40 nm (ex-situ). Humidity sensing mechanism is explained on the basis of FTIR spectra. Co-ordination between tertiary nitrogen ( Open image in new window ) and C=O group with nAg particles during nanocomposite formation is evidenced from low humidity FTIR. Breaking of these bonds is evidenced from high humidity FTIR. In/PVP/6-PVP sensors offer higher sensitivity (~ 0.68 ± 0.04 (1/% RH)) as compared to Ex/PVP/4:5-PVP sensors [~ 0.31 ± 0.04 (1/% RH)].


  1. 1.
    A. Sun, Z. Li, T. Wei, Y. Li, P. Cui, Sens. Actuators B 142, 197–203 (2009)CrossRefGoogle Scholar
  2. 2.
    C.R. Zamarreño, M. Hernaez, I. Del Villar, I.R. Matias, F.J. Arregui, Sens. Actuators B 146, 414–417 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Mathew, Y. Semenov, G. Farrell, Sens. Actuators A 174, 47–51 (2012)CrossRefGoogle Scholar
  4. 4.
    M.V. Fuke, P.V. Adhyapak, U.P. Mulik, D.P. Amalnerkar, R.C. Aiyer, Talanta 78, 590–595 (2009)CrossRefGoogle Scholar
  5. 5.
    X. Liu, M. Jiang, Q. Sui, X. Geng, J. Mod. Opt. 63, 1668–1674 (2016)CrossRefGoogle Scholar
  6. 6.
    L. Alwis, T. Sun, K.T.V. Grattan, Measurement 46, 4052–4074 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Urrutia, J. Goicoechea, F.J. Arregui, J. Sens. 227, 135–141 (2015)Google Scholar
  8. 8.
    B. Gu, M. Yin, A.P. Zhang, J. Qian, S. He, Opt. Express 19, 4140–4146 (2011)CrossRefGoogle Scholar
  9. 9.
    B.C. Yadav, R.C. Yadav, S. Singh, P.K. Dwivedi, H. Ryu, S. Kang, Opt. Laser Technol. 49, 68–74 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Fuke, A. Vijayan, M. Kulkarni, R. Hawaldarb, R.C. Aiyera, Talanta 76, 1035–1040 (2008)CrossRefGoogle Scholar
  11. 11.
    P.D. Mahapure, R.C. Aiyer, P.V. Adhyapaka, D.P. Amalnerkara, S.W. Gosavi, IEEE Xplore 10.1109/ISPTS.2012.6260936 (2012)Google Scholar
  12. 12.
    M. Matsuguchi, S. Umeda, Y. Sadaoka, Y. Sakai, Sens. Actuators B 49, 179–185 (1998)CrossRefGoogle Scholar
  13. 13.
    M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, N.A. Vainos, Appl. Opt. 45, 4567–4571 (2006)CrossRefGoogle Scholar
  14. 14.
    B. Adhikari, S. Majumdar, Prog. Polym. Sci. 29, 699–766 (2004)CrossRefGoogle Scholar
  15. 15.
    M.V. Fuke, P. Kanitkar, M. Kulkarni, B.B. Kale, R.C. Aiyer, Talanta 81, 320–326 (2010)CrossRefGoogle Scholar
  16. 16.
    D. Malina, A. Sobczak-Kupiec, Z. Wzorek, Z. Kowalski, Dig. J. Nanomater. Biostruct. 7, 1527–1534 (2012)Google Scholar
  17. 17.
    O.P. Valmikanathan, O. Ostroverkhova, I.S. Mulla, K. Vijayamohanan, S.V. Atre, Polymer 49, 3413–3418 (2008)CrossRefGoogle Scholar
  18. 18.
    O. Eksik, M.A. Tasdelen, A.T. Erciyes, Y. Yagci, Compos. Interfaces 17, 357–369 (2010)CrossRefGoogle Scholar
  19. 19.
    P.D. Mahapure, R.C. Aiyer, S.W. Gosavi, IEEE Xplore, 978-1-4673-8018-8$415 (2015)Google Scholar
  20. 20.
    Ratyakshi, R.P. Chauhan, Asian J. Chem. 21, S113–S116 (2009)Google Scholar
  21. 21.
    S. Piñero, S. Camero, S. Blanco, J. Phys. 786, 012020 (2017)Google Scholar
  22. 22.
    M.-R. Yang, K.-S. Chen, Sens. Actuators B 49, 240–247 (1998)CrossRefGoogle Scholar
  23. 23.
    M.V. Fuke, A. Vijayan, M. Kulkarni, R. Hawaldar, R.C. Aiyer, Talanta 76, 1035–1040 (2008)CrossRefGoogle Scholar
  24. 24.
    N. Giri, R.K. Natarajan, S. Gunasekaran, S. Shreemathi, Arch. Appl. Sci. Res. 3, 624–630 (2011)Google Scholar
  25. 25.
    B. Sadeghi, M.A.S. Sadjadi, A. Pourahmad, Int. J. Nanosci. Nanotechnol. 4, 3–12 (2008)Google Scholar
  26. 26.
    Z. Zhang, B. Zhao, L. Hu, J. Solid State Chem. 121, 105–110 (1996)CrossRefGoogle Scholar
  27. 27.
    X. Cong-Wen, Y. Hai-Tao, S. Cheng-Min, L. Zi-An, Z. Huai-Ruo, L. Fei, Y. Tian-Zhong, C. Shu-Tang, G. Hong-Jun, Chin. Phys. 14, 2269–2275 (2005)CrossRefGoogle Scholar
  28. 28.
    Abdalrahim alahmad, Int. J. ChemTech Res. 6, 450–459 (2014)Google Scholar
  29. 29.
    P.-G. Su, Y.L. Sun, C.C. Lin, Sens. Actuators B 113, 883–886 (2006)CrossRefGoogle Scholar
  30. 30.
    A. Goel, N. Rani, Open J. Inorg. Chem. 2, 67–73 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Porel, S. Singh, S.S. Harsha, D.N. Rao, T.P. Radhakrishnan, Chem. Mater. 17, 9–12 (2005)CrossRefGoogle Scholar
  32. 32.
    A.C. Power, A.J. Betts, J.F. Cassidy, Analyst 135, 1645–1652 (2010)CrossRefGoogle Scholar
  33. 33.
    A. Zielinska, E. Skwarek, A. Zaleska, M. Gazda, J. Hupka, Procedia Chem. 1, 1560–1566 (2009)CrossRefGoogle Scholar
  34. 34.
    Y. Wang, Y. Li, S. Yang, G. Zhang, D. An, C. Wang, Q. Yang, X. Chen, X. Jing, Y. Wei, Nanotechnology 17, 3304–3307 (2006)CrossRefGoogle Scholar
  35. 35.
    L. Kabir, A.R. Mandal, S.K. Mandal, J. Exp. Nanosci. 3, 297–305 (2008)CrossRefGoogle Scholar
  36. 36.
    A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, R.C. Aiyer, Sens. Actuators B 129, 106–112 (2008)CrossRefGoogle Scholar
  37. 37.
    S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, J. Mol. Struct. 1157, 607–615 (2018)CrossRefGoogle Scholar
  38. 38.
    Y. Li, M.J. Yang, Sens. Actuators B 86, 155–159 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsSavitribai Phule Pune UniversityPuneIndia
  2. 2.Department of Electronic ScienceSavitribai Phule Pune UniversityPuneIndia

Personalised recommendations