NaF induced enhancement of luminous efficiency in narrow-band red-emitting K2TiF6:Mn4+@NaF phosphors

  • Youmiao Liu
  • Tianman Wang
  • Zhipeng Chen
  • Keying Chen
  • Mingming Guan
  • Yingheng HuangEmail author
  • Sen LiaoEmail author
  • Huaxin ZhangEmail author


A series of K2TiF6:xMn4+ @NaF samples were prepared by the cation exchange method in HF solution. Coating effects of NaF on the fluorescent properties of the samples were discussed. It is interesting that NaF has induced enhancement of luminous efficiency for the samples. Mechanism of NaF induced enhanced luminescence effect was suggested. That is that the enhancement effect of NaF coating is mainly attributed to a suitable local distortion of the crystal field surrounding the Mn4+ activator through doping with NaF. The results indicate that the optimal conditions are x = 0.07 and wNaNO3 = 2.5 g. Decay lifetime and the photoluminescence quantum yield of the optimal sample are 5.25 ms and 99.19 ± 0.03%, respectively. The chromaticity coordinates of the optimal sample are x = 0.6926, y = 0.3073. So, the phosphor emits deep red light, which can be applied for blue light-based white LED.



This research is supported by the National Natural Science Foundation of China (Grant Nos. 21561003, 21661006), the Scientific Research Foundation of Guangxi University (Grant No. XDZ140116), and the Students Experimental Skills and Innovation Ability Training Fund Project of Guangxi University (Nos. 201610593172, 201710593183).


  1. 1.
    R.J. Xie, Y.Q. Li, N. Hirosaki, H. Yamamoto, Nitride Phosphors and Solid-State Lighting (CRC Press, 2016)Google Scholar
  2. 2.
    Y. Liu, C. Yang, H. Xiong, N. Zhang, Z. Leng, R. Li, S. Gan, Colloid Surf. A 502, 139–146 (2016)CrossRefGoogle Scholar
  3. 3.
    H. Daicho, T. Iwasaki, K. Enomoto, Y. Sasaki, Y. Maeno, Y. Shinomiya, S. Aoyagi, E. Nishibori, M. Sakata, H. Sawa, Nat. Commun. 3, 1132 (2012)CrossRefGoogle Scholar
  4. 4.
    P. Pust, V. Weiler, C. Hecht, A. Tücks, A.S. Wochnik, A. Hecht, D. Wiechert, C. Scheu, P.J. Schmidt, W. Schnick, Nat. Mater. 13, 891–896 (2014)CrossRefGoogle Scholar
  5. 5.
    T. Sasaki, J. Fukushima, Y. Hayashi, H. Takizawa, J. Lumin. 188, 101–106 (2017)CrossRefGoogle Scholar
  6. 6.
    T.M. Wang, Y. Gao, Z.P. Chen, Q.Y. Huang, L.N. Wu, Y.H. Huang, S. Liao, H.X. Zhang, J. Lumin. 188, 307–312 (2017)CrossRefGoogle Scholar
  7. 7.
    R.P. Cao, Z.H. Shi, G.J. Quan, T. Chen, S.L. Guo, Z.F. Hu, P. Liu, J. Lumin. 188, 577–581 (2017)CrossRefGoogle Scholar
  8. 8.
    T. Sasaki, J. Fukushima, Y. Hayashi, H. Takizawa, J. Lumin. 187, 540–545 (2017)CrossRefGoogle Scholar
  9. 9.
    J. Meyer, F. Tappe, Adv. Opt. Mater. 3, 424–430 (2015)CrossRefGoogle Scholar
  10. 10.
    C.F. Guo, L. Luan, C.H. Chen, D.X. Huang, Q. Su, Mater. Lett. 62, 600–602 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Schmiechen, P. Strobel, C. Hecht, T. Reith, M. Siegert, P.J. Schmidt, P. Huppertz, D. Wiechert, W. Schnick, Chem. Mater. 27, 1780–1785 (2015)CrossRefGoogle Scholar
  12. 12.
    W.B. Park, S.P. Singh, C. Yoon, K.S. Sohn, J. Mater. Chem. C 1, 1832–1839 (2013)CrossRefGoogle Scholar
  13. 13.
    L.F. Lv, X.Y. Jiang, S.M. Huang, X.A. Chen, Y.X. Pan, J. Mater. Chem. C 2, 3879–3884 (2014)CrossRefGoogle Scholar
  14. 14.
    L. Huang, Y.W. Zhu, X.J. Zhang, R. Zou, F.J. Pan, J. Wang, M.M. Wu, Chem. Mater. 28, 1495–1502 (2016)CrossRefGoogle Scholar
  15. 15.
    H.M. Zhu, C.C. Lin, W.Q. Luo, S.T. Shu, Z.G. Liu, Y.S. Liu, J.T. Kong, E. Ma, Y.G. Cao, R.S. Liu, Nat. Commun. 5, 4312 (2014)CrossRefGoogle Scholar
  16. 16.
    Y.Y. Zhou, Q. Zhou, Y. Liu, Z.L. Wang, H. Yang, Q. Wang, Mater. Res. Bull. 73, 14–20 (2016)CrossRefGoogle Scholar
  17. 17.
    T.M. Wang, Y. Gao, Z.P. Chen, Q.Y. Huang, B.L. Song, Y.H. Huang, S. Liao, H.X. Zhang, J. Mater. Sci.: Mater. Electron. 28, 11878–11885 (2017)Google Scholar
  18. 18.
    E.F. Schubert, J.K. Kim, Solid-state light sources getting smart. Science 308, 1274–1278 (2005)CrossRefGoogle Scholar
  19. 19.
    Y.W. Zhu, L.Y. Cao, M.G. Brik, X.J. Zhang, L. Huang, T.T. Xuan, J. Wang, J. Mater. Chem. C 5, 6420–6426 (2017)CrossRefGoogle Scholar
  20. 20.
    G.L. Mo, W.P. Wang, K.L. Wang, G.H. Wen, M.H. Zhu, J.X. Wang, J. Mater. Sci.: Mater. Electron. 28, 8155–8159 (2017)Google Scholar
  21. 21.
    Z.Q. Zhong, X. Wang, J.P. Zhang, H.Z. Zhong, J.B. Han, Appl. Phys. Lett. 110, 212405 (2017)CrossRefGoogle Scholar
  22. 22.
    L.Q. Xi, Y.X. Pan, X. Chen, S.M. Huang, M.M. Wu, J. Am. Ceram. Soc. 100, 2005–2015 (2017)CrossRefGoogle Scholar
  23. 23.
    X.Q. Li, X.M. Su, P. Liu, J. Liu, Z.L. Yao, J.J. Chen, H. Yao, X.B. Yu, M. Zhan, CrystEngComm 17, 930–936 (2015)CrossRefGoogle Scholar
  24. 24.
    Q. Zhou, H.Y. Tan, Y.Y. Zhou, Q.H. Zhang, Z.L. Wang, J. Yan, M.M. Wu, J. Mater. Chem. C 4, 7443–7748 (2016)CrossRefGoogle Scholar
  25. 25.
    J.S. Zhong, D.Q. Chen, X. Wang, L.F. Chen, H. Yu, Z.G. Ji, W.D. Xiang, J. Alloys Compd. 662, 232–239 (2016)CrossRefGoogle Scholar
  26. 26.
    X.Y. Jiang, Z. Chen, S.M. Huang, J.G. Wang, Y.X. Pan, Dalton Trans. 43, 9414–9418 (2014)CrossRefGoogle Scholar
  27. 27.
    L.L. Wei, C.C. Lin, Y. Wang, M.H. Fang, H. Jiao, R.S. Liu, ACS Appl. Mater. Interfaces 7, 10656–10659 (2015)CrossRefGoogle Scholar
  28. 28.
    Z.L. Wang, Y. Liu, Y.Y. Zhou, Q. Zhou, H.Y. Tan, Q.H. Zhang, J.H. Peng, RSC Adv. 5, 58136–58140 (2015)CrossRefGoogle Scholar
  29. 29.
    L.L. Wei, C.C. Lin, M.H. Fang, M.G. Brik, S.F. Hu, H. Jiao, R.S. Liu, J. Mater. Chem. C 3, 1655–1660 (2015)CrossRefGoogle Scholar
  30. 30.
    I. Jang, J. Kim, H. Kim, W.H. Kim, S.W. Jeon, J.P. Kim, Colloids Surf. A 520, 850–854 (2017)CrossRefGoogle Scholar
  31. 31.
    N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, C. Shivakumara, K. Narahari, R.P.S. Chakradhar, Spectrochim. Acta 86, 8–14 (2012)CrossRefGoogle Scholar
  32. 32.
    C. Lorbeer, F. Behrends, J. Cybinska, H. Eckert, A.V. Mudring, J. Mater. Chem. C 2, 9439–9450 (2014)CrossRefGoogle Scholar
  33. 33.
    Q.W. Long, Y. Gao, Y.H. Huang, S. Liao, B.L. Song, W.W. Wu, J.J. Cai, Mater. Lett. 160, 436–439 (2015)CrossRefGoogle Scholar
  34. 34.
    T.M. Wang, R. Nong, Y. Gao, X.Z. Zhang, Z.R. Tan, L.P. Jian, S. Liao, Y.H. Huang, H.X. Zhang, Mater. Lett. 208, 77–81 (2017)CrossRefGoogle Scholar
  35. 35.
    W.G. Palmer, Experimental Inorganic Chemistry (University Press, Cambridge, 1962)Google Scholar
  36. 36.
    M.H. Fang, H.D. Nguyen, C.C. Lin, R.S. Liu, J. Mater. Chem. C 3, 7277–7280 (2015)CrossRefGoogle Scholar
  37. 37.
    M. Kim, W.B. Park, B. Bang, C.H. Kim, K.S. Sohn, J. Mater. Chem. C 3, 5484–5489 (2015)CrossRefGoogle Scholar
  38. 38.
    W. Xie, J.X. Li, C.X. Tian, Z.S. Wang, M.B. Xie, C.W. Zou, G.H. Sun, F.W. Kang, Solid State Sci. 76, 92–99 (2018)CrossRefGoogle Scholar
  39. 39.
    Q. Zhou, Y.Y. Zhou, Z.L. Wang, Y. Liu, G. Chen, J.H. Peng, J. Yan, M.M. Wu, RSC Adv. 5, 84821–84826 (2015)CrossRefGoogle Scholar
  40. 40.
    T. Han, T.C. Lang, J. Wang, M.J. Tu, L.L. Peng, RSC Adv. 5, 100054–100059 (2015)CrossRefGoogle Scholar
  41. 41.
    C.I. VillaVelazquez-Mendoza, J.L. Rodriguez-Mendoza, R.P. Hodgkins, V. Ibarra-Galvan, A.L. Leal-Cruz, A. Lopez-Valdivieso, M.I. Pech-Canul, Mater. Lett. 121, 191–193 (2014)CrossRefGoogle Scholar
  42. 42.
    S.K. Kim, X. Zhang, D.J. Hill, K.D. Song, J.S. Park, H.G. Park, J.F. Cahoon, Nano Lett. 15, 753–758 (2014)CrossRefGoogle Scholar
  43. 43.
    Y. Yan, A.J. Faber, H. De Waal, J. Non Cryst. Solids 181, 283–290 (1995)CrossRefGoogle Scholar
  44. 44.
    A. Parchur, A. Prasad, A. Ansari, S. Rai, R. Ningthoujam, Dalton Trans. 41, 11032–11045 (2012)CrossRefGoogle Scholar
  45. 45.
    Q. Zhou, Y.Y. Zhou, Y. Liu, Z.L. Wang, G. Chen, J.H. Peng, J. Yan, M.M. Wu, J. Mater. Chem. C 3, 9615–9619 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical EngineeringGuangxi UniversityNanningChina
  2. 2.School of Materials Science and EngineeringGuangxi UniversityNanningChina
  3. 3.Fangchenggang Entry-Exit Inspection and Quarantine BureauFangchenggangChina

Personalised recommendations