Investigation on optical, thermal, mechanical, dielectric and ferroelectric properties of non linear optical single crystal guanidinium manganese sulphate

  • A. Rajeswari
  • G. Vinitha
  • P. MurugakoothanEmail author


Semi organic nonlinear optical crystal of guanidinium manganese sulphate hydrate (GuMnS) was grown from its aqueous solution by slow evaporation solution growth technique. Formation of the crystalline compound was confirmed by powder X-ray diffraction analysis (PXRD).The compound crystallizes in the triclinic crystal system with space group Pī. The functional groups present in the crystal have been identified by FTIR spectroscopic analysis. UV–Vis–NIR spectral study indicates that the grown crystal is transparent in the entire visible region with a lower cut off wavelength 229 nm and the band gap value is found to be 5.06 eV. Nonlinear refractive index (n2), absorption coefficient (β) and third order nonlinear susceptibility (χ(3)) were determined using Z-scan technique. Thermo gravimetric and differential thermo gravimetric analyses (TG-DTG) were performed to analyse the thermal behaviour of the grown crystal. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. The ferroelectric nature of the grown crystal was analysed by P–E hysteresis loop. The mechanical behaviour of the grown crystal was studied by Vickers’s micro hardness test. The laser induced surface damage threshold (LDT) of the grown crystal was found to be 1.157 GW/cm2. The obtained results show that guanidinium manganese sulphate crystals are potential materials in NLO device applications.



One of the authors (AR) is grateful to SAIF, IIT-M for characterisation techniques and also to the management of Loyola College—Times of India Major research project, Chennai 34 for providing hardness study.


  1. 1.
    G. Xing, M. Jiang, Z. Shav, D. Xu, Chin. J. Lasers 14, 357 (1987)Google Scholar
  2. 2.
    S. Velsko, Laser program annual report, Lawrence, Livermore, National laboratory, 1990Google Scholar
  3. 3.
    S.S. Gupte, R.D. Pradhan, A. Marcano, N. Melikechi, C.F. Desai, J. Appl. Phys. 91, 3125 (2002)CrossRefGoogle Scholar
  4. 4.
    N.P. Rajesh, V. Kannan, M. Ashok, K. Sivaji, P. Ramaswamy, J. Cryst. Growth 262, 561 (2004)CrossRefGoogle Scholar
  5. 5.
    W. Wang, K. Sutter, C.P.Z. Bosshard, H. Arend, P. Gunter, G. Chapius, F. Nicolo, Jpn. J. Appl. Phys. 27, 1138 (1998)CrossRefGoogle Scholar
  6. 6.
    M. Zhang, M. Jiang, D. Yuvan, X. Taro, Chin. Phys. Lett. 6, 280 (1989)CrossRefGoogle Scholar
  7. 7.
    R.J. Sension, B. Hudson, P.R. Callis, J. Phys. Chem. 94, 4015 (1990)CrossRefGoogle Scholar
  8. 8.
    O.D. Bonner, C.F. Jordon, Spectrochim. Acta 32, 1243 (1976)CrossRefGoogle Scholar
  9. 9.
    E.D. Raczynska, J. Phys. Org. Chem. 16, 91 (2003)CrossRefGoogle Scholar
  10. 10.
    M. Fleck, L. Bohaty, E. Tilmanns, Solid State Sci. 469, 6 (2004)Google Scholar
  11. 11.
    M. Juanid Bushri, C.J. Antony, M. Fleck, Solid State Commun. 143, 348 (2007)CrossRefGoogle Scholar
  12. 12.
    P.M. Nikolic, J. Phys. Condens. Matter 5, 3039 (1993)CrossRefGoogle Scholar
  13. 13.
    P. Christhuraj, M. Lalitha, S. Anbarasu, P.S. Joseph, A. Jestin Lenus, T. Kishore Kumar, D. Prem Anand, J. Sciencia Acta Xaveriana 3, 11 (2012)Google Scholar
  14. 14.
    M. Juanid Bushri, C.J. Antony, J. Raman Spectrosc. 39, 368 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Annie Rosan, C. Joseph, M.A. Ittayachen, Mater. Lett. 49, 299 (2001)CrossRefGoogle Scholar
  16. 16.
    R.M. Jauhar, S. Kalainathan, P. Murugakoothan, J. Cryst. Growth 424, 42 (2015)CrossRefGoogle Scholar
  17. 17.
    R. Subhasini, D. Sathya, V. Sivashankar, P.S. Latha mageshwari, S. Arjunan, J. Opt. Mater. 62, 357 (2016)CrossRefGoogle Scholar
  18. 18.
    S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798 (1969)CrossRefGoogle Scholar
  19. 19.
    S. Arjunan, A. Bhaskaran, R. Mohan Kumar, R. Mohan, R. Jayavel, J. Alloy. Compd. 506, 784 (2010)CrossRefGoogle Scholar
  20. 20.
    N.V. Prasad, G. Prasad, T. Bhimasankaran, S.V. Suryanarayana, G.S. Kuamar, Ind. J. Pure Appl. Phys. 34, 639 (1996)Google Scholar
  21. 21.
    S. Aruna, G. Bhagavannarayana, M. Palanisamy, P.C. Thomas, B. Varghese, P. Sagayaraj, J. Cryst. Growth 2, 403 (2007)CrossRefGoogle Scholar
  22. 22.
    A.N. Holden, W.J. Merz, J.P. Remeika, B.T. Mathais, Phys. Rev. 101(3), 962 (1956)CrossRefGoogle Scholar
  23. 23.
    K.K. Bamzai, P.N. Kortu, B.M. Wanklyn, J. Mater. Chem. Phys. 85, 353 (2004)CrossRefGoogle Scholar
  24. 24.
    M. Loganayaki, V. Siva sankar, P. Ramesh, M.N. Ponnuswamy, P. Murugakoothan, J. Miner. Mater. Charact. Eng. 10, 843 (2011)Google Scholar
  25. 25.
    V. Sivashankar, R. Siddheswaran, P. Murugakoothan, Mater. Chem. Phys. 130, 323 (2011)CrossRefGoogle Scholar
  26. 26.
    P. Jayaprakash, P. Sangeetha, C.R.T. Kumari et al., J. Mater. Sci.: Mater. Electron. 281, 8787 (2017)Google Scholar
  27. 27.
    S.A. Martin Britto Dhas, S. Natarajan, Cryst. Res. Technol. 42, 471 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MRDL, PG and Research Department of PhysicsPachaiyappa’s CollegeChennaiIndia
  2. 2.Department of PhysicsSDNB Vaishnav College for WomenChennaiIndia
  3. 3.Department of PhysicsVIT UniversityChennaiIndia

Personalised recommendations