Photoluminescence features of magnetic nano-metric metal oxides

  • M. Rashad
  • Atif Mossad Ali
  • M. I. Sayyed
  • I. V. Kityk
Article
  • 24 Downloads

Abstract

Copper oxide (CuO) and cobalt oxide (Co3O4) nanoparticles (NPs) have been synthesized using microwave irradiation method. These NPs have been prepared using copper nitrate and cobalt nitrate, respectively as the starting materials. The resulted powder of these NPs were explored by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), thermogravimetry and differential thermal analysis (DTA). XRD observations obtained the formation of nanostructure phase for both types of these NPs. The structural observations were helped for identifying the nano nature of these both materials. Optical properties such as photoluminescence (PL) and absorbance (A) of CuO and Co3O4 NPs have been studied. A resulted shift of PL with respect to absorption peak is 290 and 172 nm for CuO and Co3O4 NPs, respectively. Moreover, the magnetic hysteresis loop of both CuO and Co3O4 NPs were measured. The magnetic investigations obtained that the magnetic response with a maximum moment M ≤ 0.07 emu/g is shown up to the maximum applied the field of 5 kOe for CuO NPs which is related to the uncompensated surface spins. On the other hand, the magnetization curve has linear shape in the field range used with the irreversible contribution for Co3O4 NPs.

Notes

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number R.G.P. 1/20/38.

References

  1. 1.
    A. Henglein, Chem. Rev. 89, 1861–1873 (1989)CrossRefGoogle Scholar
  2. 2.
    N.M. Shaalan, M. Rashad, M.A. Abdel-Rahim, Opt. Quant. Electron. 48, 531 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Rashad, M. Rüsing, G. Berth, K. Lischka, A. Pawlis, J. Nanomater. 2013, 714853 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Rashad, T.A. Hamdalla, S.E. Al Garni, A.A.A. Darwish, S.M. Seleim, Opt. Mater. 75, 869–874 (2018)CrossRefGoogle Scholar
  5. 5.
    K. Rayapa Reddy, J. Mol. Struct. 1150, 553–557 (2017)CrossRefGoogle Scholar
  6. 6.
    P.C.E. Stamp, E.M. Chudnovsky, B. Barbara, Int. J. Mod. Phys. B 6, 1355 (1992)CrossRefGoogle Scholar
  7. 7.
    L. Neel, in Low Temperature Physics, ed by C. Dewitt, B. Dreyfus, P. D. de Gennes (Gordon and Beach, New York, 1962), p. 413Google Scholar
  8. 8.
    J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Phys. Rev. B 38, 11322–11330 (1988)CrossRefGoogle Scholar
  9. 9.
    X.G. Zheng, C.N. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada, Y. Soejima, Phys. Rev. Lett. 85, 5170–5173 (2000)CrossRefGoogle Scholar
  10. 10.
    T.I. Arbuzova, I.B. Smolyak, S.V. Naumov, A.A. Samokhvalov, Phys. Solid State 40, 1702 (1998)CrossRefGoogle Scholar
  11. 11.
    K. Muraleedharan, C.K. Subramaniam, N. Venkataramani, T.K. Gundu Rao, C.M. Srivastava, V. Sankaranarayan, R. Srinivasan, Solid State Commun. 76, 727 (1990)CrossRefGoogle Scholar
  12. 12.
    G. Narsinga Rao, Y.D. Yao, J.W. Chen, IEEE Trans. Magn. 41, 3409 (2005)CrossRefGoogle Scholar
  13. 13.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 499 (2000)CrossRefGoogle Scholar
  14. 14.
    S. Farhadi, K. Pourzare, S. Sadeghinejad, J. Nanostruct. Chem. 3, 3–16 (2013)Google Scholar
  15. 15.
    A.A. Hendi, M. Rashad, Physica B 538, 185–190 (2018)CrossRefGoogle Scholar
  16. 16.
    N.M. Shaalan, M. Rashad, A.H. Moharram, M.A. Abdel-Rahim, Mater. Sci. Semicond. Process. 46, 1–5 (2016)CrossRefGoogle Scholar
  17. 17.
    W.T. Yao, S.H. Yu, Y. Zhou et al., J. Phys. Chem. B 109, 14011–14016 (2005)CrossRefGoogle Scholar
  18. 18.
    X. Zhang, H. Zhong, L. Xu, S. Wang, H. Chi, Q. Pan, G. Zhang, Mater. Res. Bull. 102, 108–115 (2018)CrossRefGoogle Scholar
  19. 19.
    H. Klug, L. Alexander, X-Ray Diffraction Procedures, vol. 125 (Wiley, New York, 1962)Google Scholar
  20. 20.
    A.H. Moharram, S.A. Mansour, M.A. Hussein, M. Rashad, J. Nanomater. 2014, 716210 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Mørup, D.E. Madsen, C. Frandsen, C.R.H. Bahl, M.F. Hansen, J. Phys. 19, 213202 (2007)Google Scholar
  22. 22.
    M. Ponnar, C. Thangamani, P. Monisha, S.S. Gomathi, K. Pushpanathan, Appl. Surf. Sci. (2018).  https://doi.org/10.1016/j.apsusc.2018.01.126. (in press)Google Scholar
  23. 23.
    M.J. Benitez, O. Petracic, E.L. Salabas, F. Radu, H. Tüysüz, F. Schüth, H. Zabel, Phys. Rev. Lett. 101, 097206 (2008)CrossRefGoogle Scholar
  24. 24.
    P. Geetu Sharma, Jeevanandam, Microporous Mesoporous Mater. 165, 55–62 (2013)CrossRefGoogle Scholar
  25. 25.
    Y.W. Dou, M.X. Xu, J. Wu, Y.B. Shi, H.X. Lu, Acta Phys. Sin. 41, 149 (1992)Google Scholar
  26. 26.
    J. Sakuri, W.J.L. Buyers, R.A. Cowley, G. Dolling, Phys. Rev. 167, 510 (1968)CrossRefGoogle Scholar
  27. 27.
    S. Farhadi, J. Safabakhsh, P. Zaringhadam, J. Nanostruct. Chem. 2013, 3–69 (2013)Google Scholar
  28. 28.
    Y. Ichiyanagi, Y. Kimishima, Yamada, J. Magn. Magn. Mater. 272–276, 1245 (2004)CrossRefGoogle Scholar
  29. 29.
    L. Zhang, D. Xue, J. Mater. Sci. Lett. 21, 1931 (2002)CrossRefGoogle Scholar
  30. 30.
    P. Dutta, M.S. Seehra, S. Thota, J. Kumar, J. Phys.: Condens. Matter 20, 015218 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Rashad
    • 1
    • 2
  • Atif Mossad Ali
    • 3
  • M. I. Sayyed
    • 2
  • I. V. Kityk
    • 4
  1. 1.Physics Department, Faculty of ScienceAssiut UniversityAssiutEgypt
  2. 2.Physics Department, Faculty of ScienceUniversity of TabukTabukSaudi Arabia
  3. 3.Physics Department, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  4. 4.Institute of Optoelectronics and Measuring Systems, Faculty of Electrical EngineeringCzestochowa University of TechnologyCzestochowaPoland

Personalised recommendations