Investigations on the physical properties of Mn-modified ZnO samples prepared by sol–gel route

  • Gunjan Srinet
  • Subhash Sharma
  • Brijmohan Prajapati
  • J. M. Siqueiros
Article
  • 57 Downloads

Abstract

In this report, we have synthesized successfully sol–gel derived Zn1−xMnxO (x = 0.02, 0.04 and 0.06) nanoparticles to see the effect of Mn doping on structural, optical and magnetic properties of ZnO. The phase purity and structural analysis of all the samples have been made by the X-ray diffraction (XRD) technique with Rietveld refinement using the FullProf software. This study clearly revealed that Mn-doped ZnO nanoparticles exhibit hexagonal wurtzite structure with P63mc symmetry. Lattice parameters found to be increased with Mn doping, this shows that Mn2+ is successfully substituted on Zn2+ sites. The morphology of the nanoparticles was examined by FE-SEM. UV–Vis, FTIR, PL and VSM techniques have been used to see the optical and magnetic response of all the samples. UV–Vis spectra clearly indicate the sharp increment in the band gap energy with Mn doping up to 3.22 eV might be due to the Burstein–Moss effect. FT-IR studies have been utilized to find out the different phonon modes present in the prepared samples. Photoluminescence study revealed a blue shift of the near band emission (NBE) and an increase in the intrinsic defects (viz. VO and OZn) density with increasing Mn concentration up to a certain extent of doping (6%). Magnetic measurement of the Mn doped ZnO samples shows bound magnetic polaron (BMP) induced room temperature ferromagnetism (RTFM) behavior, however, there is suppression of ferromagnetic behavior due to the existence of antiferromagnetic ordering also present in the samples, supported by the Curie–Weiss Law.

Notes

Acknowledgements

We thankfully acknowledge the financial support from SERB-DST, Government of India for this work via Project (File No. PDF/2016/000579). Gunjan Srinet is thankful to JIIT for the experimental facilities for this piece of work. Subhash Sharma, acknowledges support from DGPA – UNAM Postdoc fellowship. One of the authors JMS, acknowledges support from CoNaCyT, Grant 280309 and PAPIIT-DGAPA-UNAM Grant No. IN105307.

References

  1. 1.
    K. Omri, J. El Ghoul, O.M. Lemine, M. Bououdina, B. Zhang, L. El Mir, Magnetic and optical properties of manganese doped ZnO nanoparticles synthesized by sol–gel technique. Superlattices Microstruct. 60(2013), 139–147 (2013)CrossRefGoogle Scholar
  2. 2.
    T. Diet, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)CrossRefGoogle Scholar
  3. 3.
    K. Sato, H. Katayama-Yoshida, Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Jpn. J. Appl. Phys. 39, L555–L539 (2000)CrossRefGoogle Scholar
  4. 4.
    R. Bhargava, P.K. Sharma, A.K. Chawla, S. Kumar, R. Chandra, A.C. Pandey, Kumar N.,Variation in structural, optical and magnetic properties of Zn1−xCrxO (x = 0.0, 0.10, 0.15, and 0.20) nanoparticles: role of dopant concentration on non-saturation of magnetization. Mater. Chem. Phys. 125, 664–671 (2011)CrossRefGoogle Scholar
  5. 5.
    K. Omri, J. El Ghoul, O.M. Lemine, M. Bououdina, B. Zhang, E.L. Mir, Magnetic and optical properties of manganese doped ZnO nanoparticles synthesized by sol–gel technique. Superlattices Microstruct. 60, 139–147 (2013)CrossRefGoogle Scholar
  6. 6.
    N. Al-Hardan, M.J. Abdullah, A.A. Aziz, Impedance spectroscopy of undoped and Cr-doped ZnO gas sensors under different oxygen concentrations. Appl. Surf. Sci. 257, 8993–8997 (2011)CrossRefGoogle Scholar
  7. 7.
    K. Samanta, S. Dussan, R.S. Katiyar, Structural and optical properties of nanocrystalline Zn1−xMnxO. Appl. Phys. Lett. 90, 261903–261905 (2007)CrossRefGoogle Scholar
  8. 8.
    B. Yang, A. Kumar, H. Zhang, P. Feng, R.S. Katiyar, Z.W. Yang, Growth of ZnO nanostructures on metallic and semiconducting substrates by pulsed laser deposition technique. J. Phys. D 42(4), 045415 (2009)CrossRefGoogle Scholar
  9. 9.
    K. Sato, H. Katayama-Yoshida, First principles materials design for semiconductor spintronics. Semicond. Sci. Technol. 17, 367 (2002)CrossRefGoogle Scholar
  10. 10.
    S. Ekambaram, Combustion synthesis and characterization of new class of ZnO-based ceramic pigments. J. Alloys Compd. 390, L4–L6 (2005)CrossRefGoogle Scholar
  11. 11.
    S. Suwanboon, P. Amornpitoksuk, A. Sukolrat, N. Muensit, Optical and photocatalytic properties of La-doped ZnO nanoparticles prepared via precipitation and mechanical milling method. Ceram. Int. 39, 2811–2819 (2013)CrossRefGoogle Scholar
  12. 12.
    O. Jayakumar, H. Salunke, R. Kadam, M. Mohapatra, G. Yaswant, S. Kulshreshtha, Magnetism in Mn-doped ZnO nanoparticles prepared by a co-precipitation method. Nanotechnology 17, 1278 (2006)CrossRefGoogle Scholar
  13. 13.
    S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 013001 (2009)CrossRefGoogle Scholar
  14. 14.
    S. Han, T. Jang, Y. Kim, B. Park, J. Park, Y. Jeong, Magnetism in Mn-doped ZnO bulk samples prepared by solid state reaction. Appl. Phys. Lett. 83, 920–922 (2003)CrossRefGoogle Scholar
  15. 15.
    R. Gegova, Y. Dimitriev, A.B. Nedelcheva, R. Iordanova, A. Loukanov, T. Iliev, Combustion gel method for synthesis of nanosized ZnO/TiO2 powders. J. Chem. Technol. Metall. 48(2), 147–153 (2013)Google Scholar
  16. 16.
    K. Omri, O.M. Lemine, J. El Ghoul, L. El Mir, Sol–gel synthesis and room temperature ferromagnetism in Mn doped ZnO nanocrystals. J. Mater. Sci. 26, 5930–5936 (2015)Google Scholar
  17. 17.
    G. Srinet, R. Kumar, V. Sajal, Optical and magnetic properties of Mn doped ZnO samples prepared by solid state route. J Mat. Sci. 25, 3052–3056 (2014)Google Scholar
  18. 18.
    S. Thota, T. Dutta, J. Kumar, On the sol–gel synthesis and thermal, structural, and magnetic studies of transition metal (Ni, Co, Mn) containing ZnO powders. J. Phys. 18, 2473–2486 (2006)Google Scholar
  19. 19.
    K. Omri, I. Najeh, L. El Mir, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles. Ceram. Int. 42, 8940–8948 (2016)CrossRefGoogle Scholar
  20. 20.
    X.L. Wang, C.Y. Luan, Q. Shao, A. Pruna, C.W. Leung, R. Lortz, J.A. Zapien, A. Ruotolo, Effect of the magnetic order on the room-temperature band-gap of Mn-doped ZnO thin films, Appl. Phys. Lett. 102, 102112–102115 (2013)CrossRefGoogle Scholar
  21. 21.
    R. Cusco, E. Alarcon-Liado, J. Ibanez, L. Artus, J. Jimenez, B. Wang, M.J. Callahan, Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 75, 165202–165212 (2007)CrossRefGoogle Scholar
  22. 22.
    H.Y. Xu, Y.C. Liu, C.S. Xu, Y.X. Liu, C.L. Shao, R. Mu, Structural, optical, and magnetic properties of Mn-doped ZnO thin film. J. Chem. Phys. 124, 074707–074710 (2006)CrossRefGoogle Scholar
  23. 23.
    H.K. Yadav, K. Sreenivas, R.S. Katiyar, V. Gupta, Defect induced activation of Raman silent modes in rf co-sputtered Mn doped ZnO thin films. J. Phys. D 40, 6005–6009 (2007)CrossRefGoogle Scholar
  24. 24.
    C.J. Cong, L. Liao, Q.Y. Liu, J.C. Li, K.L. Zhang, Effects of temperature on the ferromagnetism of Mn-doped ZnO nanoparticles and Mn-related Raman vibration. Nanotechnology, 17, 1520–1526 (2006)CrossRefGoogle Scholar
  25. 25.
    Y.M. Hu, C.Y. Wang, S.S. Lee, T.C. Han, W.Y. Chou, G.L. Chen, Identification of Mn related Raman modes in Mn-doped ZnO thin films. J. Raman Spectrosc. 42, 434–437 (2011)CrossRefGoogle Scholar
  26. 26.
    J. Alaria, P. Turek, M. Bernard, M. Bouloudenine, A. Berbadj, N. Brihi, G. Schmerber, S. Colis, A. Dinia, No ferromagnetism in Mn doped ZnO. Chem. Phys. Lett. 415, 337–341 (2000)CrossRefGoogle Scholar
  27. 27.
    N. Brihi, A. Bouaine, A. Berbadj, G. Schmerber, S. Colis, A. Dinia, Growth and characterizations of ZnO nanorod/film structures on copper coated Si substrates. Thin Solid Films 518, 1549–4552 (2010)CrossRefGoogle Scholar
  28. 28.
    J. Alaria, M. Bouloudenine, G. Schmerber, S. Colis, A. Dinia, P. Turek, M. Bernard, Pure paramagnetic behavior in Mn-doped ZnO semiconductors. J. Appl. Phys. 99, 08M118–08M121 (2000)CrossRefGoogle Scholar
  29. 29.
    H.Y. Xu, Y.C. Liu, C.S. Xu, Y.X. Liu, C.L. Shao, R. Mu, Structural, optical, andmagnetic properties of Mn-doped ZnO thin film. J. Chem. Phys. 124, 074707–074710 (2006)CrossRefGoogle Scholar
  30. 30.
    D Hu et.al., Structural and optical properties of Mn-doped ZnO nanocrystalline thin films with the different dopant concentrations. Physica E 61, 14–22 (2014)CrossRefGoogle Scholar
  31. 31.
    C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl. Phys. Lett. 83, 1974–1976 (2000)CrossRefGoogle Scholar
  32. 32.
    F.J. Manjon, B. Marí, J. Serrano, A.H. Romero, Silent Raman modes in zinc oxide and related nitrides. J. Appl. Phys. 97, 053516–053519 (2005)CrossRefGoogle Scholar
  33. 33.
    J. Panda, I. Sasmal, T.K. Nath, Magnetic and optical properties of Mn-doped ZnO vertically aligned nanorods synthesized by hydrothermal technique. AIP Adv. 6, 035118 (2016)CrossRefGoogle Scholar
  34. 34.
    R.K. Sharma, S. Patel, K.C. Pargaien, Synthesis, characterization and properties of Mn-doped ZnO nanocrystals. Adv. Nat. Sci. 3, 035005–035009 (2005)Google Scholar
  35. 35.
    K. Sakai, T. Kakeno, T. Ikari, S. Shirakata, T. Sakemi, K. Awai, T. Yamamoto, Defect centers and optical absorption edge of degenerated semiconductor ZnO thin films. J. Appl. Phys. 99, 043508–043514 (2006)CrossRefGoogle Scholar
  36. 36.
    Y. Sun, N.G. Ndifor-Angwafor, D.J. Riley, M.N.R. Ashfold, Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chem. Phys. Lett. 431, 352–357 (2006)CrossRefGoogle Scholar
  37. 37.
    M.A. Gondal, Q.A. Drmosh, Z.H. Yamani, T.A. Saleh, Synthesis of ZnO2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles. Appl. Surf. Sci. 256, 298–304 (2009)CrossRefGoogle Scholar
  38. 38.
    S. Wang, Z. Xu., One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 11, 1013–1098 (2011)Google Scholar
  39. 39.
    P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, Electronic structure of ZnO and its defects. Sci. China A 44, 1174–1181 (2001)CrossRefGoogle Scholar
  40. 40.
    P. Uthirakumar, C.H. Hong, Effect of annealing temperature and pH on morphology and optical property of highly dispersible ZnO nanoparticles. Mater. Charact. 60, 1305–1310 (2009)CrossRefGoogle Scholar
  41. 41.
    C.S. Lin, C.C. Hwang, W.H. Lee, W.Y. Tong, Preparation of zinc oxide (ZnO) powders with different types of morphology by a combustion synthesis method. Mater. Sci. Eng. B 140, 31–37 (2007)CrossRefGoogle Scholar
  42. 42.
    R.S. Zeferino, M.B. Flores, U. Pal, Photoluminescence and Raman scattering in Ag doped ZnO Nanoparticles. J. Appl. Phys. 109, 014308–14313 (2011)CrossRefGoogle Scholar
  43. 43.
    K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983–7990 (1996)CrossRefGoogle Scholar
  44. 44.
    Y.B. Lin, Y.M. Yang, B. Zhuang, S.L. Huang, L.P. Wu, Z.G. Huang, F.M. Zhang, Y.W. Du, Ferromagnetism of Co-doped TiO2 films prepared by plasma enhanced chemical vapour deposition (PECVD) method. J. Phys. D 41, 195007–1955016 (2008)CrossRefGoogle Scholar
  45. 45.
    Y. Tian, Y. Li, M. He, I.A. Putra, H. Peng, B. Yao, S.A. Cheong, T. Wu, Bound magnetic polarons and p-d exchange interaction in ferromagnetic insulating Cu-doped ZnO. Appl. Phys. Lett. 98, 162503–162505 (2011)CrossRefGoogle Scholar
  46. 46.
    H.T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S.X. Li, E.E. Haller, Optical properties of single-crystalline ZnO nanowires on m-sapphire. Appl. Phys. Lett. 82, 2023–2025 (2003)CrossRefGoogle Scholar
  47. 47.
    A. Dijken Van, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission. J. Lumin. 454, 87–89 (2000)Google Scholar
  48. 48.
    C. Chiorescu, J.L. Cochin, J.J. Neumeier, Magnetic inhomogeneity and magnetotransport in electron-doped Ca1–xLaxMnO3(0 ≤ x ≤ 0.10). Phys. Rev. B 73, 0202406–0202410 (2006)CrossRefGoogle Scholar
  49. 49.
    S. Kolesnik, B. Dabrowski, Absence of room temperature ferromagnetism in bulk Mn doped ZnO. J. Appl. Phys. 96, 5379–5381 (2004)CrossRefGoogle Scholar
  50. 50.
    J. Spalck, A. Lewicki, Z. Tarnawski, J.K. Furdyna, R.R. Galazka, Z. Obuszko, Magnetic susceptibility of semimagnetic semiconductors: the high-temperature regime and the role of superexchange. Phys. Rev. B 33, 3407–3418 (1986)CrossRefGoogle Scholar
  51. 51.
    S. Kolesnik, B. Dabrowski, J. Mais, Structural and magnetic properties of transition metal substituted ZnO. J. Appl. Phys. 95, 2582–2586 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gunjan Srinet
    • 1
  • Subhash Sharma
    • 1
    • 2
    • 3
  • Brijmohan Prajapati
    • 3
  • J. M. Siqueiros
    • 2
  1. 1.Department of Physics and Materials Science and EngineeringJaypee Institute of Information TechnologyNoidaIndia
  2. 2.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico
  3. 3.Materials Research Laboratory, Department of Physics, Institute of Science (ISC)Banaras Hindu UniversityVaranasiIndia

Personalised recommendations