Optical and electrical properties of E-Beam deposited TiO2/Si thin films

Article
  • 29 Downloads

Abstract

In this paper, optical and electrical properties of E-Beam deposited TiO2/Si thin films have been studied and investigated extensively. The films were deposited on p-type (100) silicon wafer by using electron beam evaporation technique. The thickness of the thin films was measured by a spectroscopic reflectometer, which is about 216 nm. The fabricated titanium oxide (TiO2) thin films were annealed at 800 °C for 1 h under N2 ambient. X-ray diffraction measurements were performed to study the structure and phase identification of the fabricated TiO2 thin films. For the optical properties, reflection, transmittance, refractive index and absorption coefficient were obtained and analyzed. The photocurrent and dark current of the fabricated films were measured by IV measurements. The measurement of the current–voltage (IV) characteristics possesses good ohmic contact. The electrical characterizations of the films were performed in the range of the low frequencies (50 and 100 kHz) and high frequencies (750 kHz and 1 MHz) by the capacitance–voltage and conductance–voltage measurements at room temperature. The capacitance of the fabricated TiO2 MOS capacitor at both high and low frequencies increases with the decrease in frequencies. The obtained conductance curves (peaks) increase with the decreasing in the frequencies. This can be due to the interface state density, series resistance and interfacial dielectric of the fabricated MOS capacitors. The variation in the characteristics of the fabricated film shows that TiO2 is a promising candidate to be used in the optoelectronic and future UV detector applications as a switch, such as an optical amplifier, emitter, and UV light detectors.

Notes

Acknowledgements

This work is supported by Abant Izzet Baysal University under Contract Numbers: AIBU, BAP. 2015.03.02.870, and 2014.03.02.722 and the Ministry of Development of Turkey under Contract Numbers: 2012K120360 and 2016K121110.

References

  1. 1.
    S. Kaya, S. Abubakar, H. Karacali, E. Yilmaz, The gamma irradiation responses of yttrium oxide capacitors and first assessment usage in radiation sensors. Sens. Actuators A 258, 44–48 (2017)CrossRefGoogle Scholar
  2. 2.
    S.M. Sze, Semiconductor Devices Physics and Technology, 2nd edn. (Wiley, Hoboken, 2002)Google Scholar
  3. 3.
    R. Lok, S. Kaya, H. Karacali, E. Yilmaz, A detailed study on the frequency-dependent electrical characteristics of Al/HfSiO4/p-Si MOS capacitors. J. Mater. Sci.: Mater. Electron. 27(12), 13154–13160 (2016)Google Scholar
  4. 4.
    S. Kaya, E. Yilmaz, H. Karacali, A.O. Cetinkaya, A. Aktag, Samarium oxide thin films deposited by reactive sputtering: effects of sputtering power and substrate temperature on microstructure, morphology and electrical properties. Mater. Sci. Semicond. Process. 33, 42–48 (2015)CrossRefGoogle Scholar
  5. 5.
    H.Y. Liu, S.H. Hong, W.C. Sun, S.Y. Wei, S.M. Yu, TiO2-based metal-semiconductor-metal ultraviolet photodetectors deposited by ultrasonic spray pyrolysis technique. IEEE Trans. Electron Dev. 63(1), 79–85 (2016)CrossRefGoogle Scholar
  6. 6.
    H. Ferhati, F. Djeffal, New high performance ultraviolet (MSM) TiO2/glass photodetector based on diffraction grating for optoelectronic applications. Optik 127(18), 7202–7209 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Addepalli, L.G. Kolla, U. Suda, Electrical, optical, structural and chemical properties of Al2TiO5 films for high-k gate dielectric applications. Mater. Sci. Semicond. Process. 57, 137–146 (2017)CrossRefGoogle Scholar
  8. 8.
    M.K. Lee, C.F. Yen, Electrical characteristics of TiO2/Al2O3/InP capacitor after removal of native oxides by atomic layer deposited Al2O3 self-cleaning and (NH4)(2)S treatments. Thin Solid Films 595, 12–16 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Kaya, E. Yilmaz, A. Kahraman, H. Karacali, Frequency dependent gamma-ray irradiation response of Sm2O3 MOS capacitors. Nucl. Instrum. Methods Phys. Res. B 358, 188–193 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Kaya, E. Yilmaz, A comprehensive study on the frequency-dependent electrical characteristics of Sm2O3 MOS capacitors. IEEE Trans. Electron Devic. 62(3), 980–987 (2015)CrossRefGoogle Scholar
  11. 11.
    K. Szajna, M. Kratzer, D. Wrana, C. Mennucci, B.R. Jany, F.B. de Mongeot, C. Teichert, F. Krok, Influence of TiO2(110) surface roughness on growth and stability of thin organic films. J. Chem. Phys. 145(14), 144703 (2016)CrossRefGoogle Scholar
  12. 12.
    C. Garlisi, G. Scandura, J. Szlachetko, S. Ahmadi, J. Sa, G. Palmisano, E-Beam evaporated TiO2 and Cu-TiO2 on glass: performance in the discoloration of methylene blue and 2-propanol oxidation. Appl. Catal. A 526, 191–199 (2016)CrossRefGoogle Scholar
  13. 13.
    J.J. Araiza, M. Cardenas, C. Falcony, V.H. Mendez-Garcia, M. Lopez, G. Contreras-Puente, Structural, optical and electrical characteristics of yttrium oxide films deposited by laser ablation. J. Vac. Sci. Technol. A 16(6), 3305–3310 (1998)CrossRefGoogle Scholar
  14. 14.
    X.J. Wang, L.D. Zhang, J.P. Zhang, G. He, M. Liu, L.Q. Zhu, Effects of post-deposition annealing on the structure and optical properties of Y2O3 thin films. Mater. Lett. 62(26), 4235–4237 (2008)CrossRefGoogle Scholar
  15. 15.
    V.H. Mudavakkat, V.V. Atuchin, V.N. Kruchinin, A. Kayani, C.V. Ramana, Structure, morphology and optical properties of nanocrystalline yttrium oxide (Y2O3) thin films. Opt. Mater. 34(5), 893–900 (2012)CrossRefGoogle Scholar
  16. 16.
    H.J. Quah, K.Y. Cheong, Deposition and post-deposition annealing of thin Y2O3 film on n-type Si in argon ambient. Mater. Chem. Phys. 130(3), 1007–1015 (2011)CrossRefGoogle Scholar
  17. 17.
    A. Dimoulas, G. Vellianitis, A. Travlos, V. Ioannou-Sougleridis, A.G. Nassiopoulou, Structural and electrical quality of the high-k dielectric Y2O3 on Si (001): dependence on growth parameters. J. Appl. Phys. 92(1), 426–431 (2002).CrossRefGoogle Scholar
  18. 18.
    E.J. Rubio, V.V. Atuchin, V.N. Kruchinin, L.D. Pokrovsky, I.P. Prosvirin, C.V. Ramana, Electronic structure and optical quality of nanocrystalline Y2O3 film surfaces and interfaces on silicon. J. Phys. Chem. C 118(25), 13644–13651 (2014)CrossRefGoogle Scholar
  19. 19.
    I.Z. Mitrovic, M. Althobaiti, A.D. Weerakkody, V.R. Dhanak, W.M. Linhart, T.D. Veal, N. Sedghi, S. Hall, P.R. Chalker, D. Tsoutsou, A. Dimoulas, Ge interface engineering using ultra-thin La2O3 and Y2O3 films: a study into the effect of deposition temperature. J. Appl. Phys. 115(11), 114102 (2014)CrossRefGoogle Scholar
  20. 20.
    R. Lopez, R. Gomez, Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J. Sol-Gel Sci. Technol. 61(1), 1–7 (2012)CrossRefGoogle Scholar
  21. 21.
    A.B. Murphy, Band-gap determination from diffuse reflectance measurements of semiconductor films, application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 91(14), 1326–1337 (2007)CrossRefGoogle Scholar
  22. 22.
    J. Zhu, Z.G. Liu, Structure and dielectric properties of ultra-thin ZrO2 films for high-k gate dielectric application prepared by pulsed laser deposition. Appl. Phys. A 78(5), 741–744 (2004)CrossRefGoogle Scholar
  23. 23.
    G. Shankar, P.S. Joseph, M.Y. Suvakin, A. Sebastiyan, Optical reflectance, optical refractive index and optical band gap measurements of nonlinear optics for photonic applications. Opt. Commun. 295, 134–139 (2013)CrossRefGoogle Scholar
  24. 24.
    S.J. Pearce, G.J. Parker, M.D.B. Charlton, J.S. Wilkinson, Structural and optical properties of yttrium oxide thin films for planar waveguiding applications. J. Vac. Sci. Technol. 28(6), 1388 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Kaya, R. Lok, A. Aktag, J. Seidel, E. Yilmaz, Frequency dependent electrical characteristics of BiFeO3 MOS capacitors. J. Alloys Compd. 583, 476–480 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Vishwas, K.N. Rao, K.V.A. Gowda, R.P.S. Chakradhar, Optical, electrical and dielectric properties of TiO2-SiO2 films prepared by a cost effective sol-gel process. Spectrochim. Acta A 83(1), 614–617 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Chakrabartty, A. Mondal, A.K. Saha, Effect of annealing on optical, electrical and charge trapping properties of TiO2 NPs arrays. J. Nanosci. Nanotechnol. 17(2), 1300–1306 (2017)CrossRefGoogle Scholar
  28. 28.
    O. Pakma, N. Serin, T. Serin, S. Altindal, Influence of frequency and bias voltage on dielectric properties and electrical conductivity of Al/TiO(2)/p-Si/p(+) (MOS) structures. J. Phys. D 41(21), 215103 (2008)CrossRefGoogle Scholar
  29. 29.
    J. Domaradzki, K. Nitsch, Electrical characterization of semiconducting V and Pd-doped TiO2 thin films on silicon by impedance spectroscopy. Thin Solid Films 515(7–8), 3745–3752 (2007)CrossRefGoogle Scholar
  30. 30.
    W.F. Lim, Z. Lockman, K.Y. Cheong, Metal-oxide-semiconductor characteristics of lanthanum cerium oxide film on Si. Appl. Phys. A 107(2), 459–467 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Hlali, N. Hizem, A. Kalboussi, Electrical characteristics of metal-insulator-semiconductor and metal-insulator-semiconductor-insulator-metal capacitors under different high-k gate dielectrics investigated in the semi-classical and quantum mechanical models. Bull. Mater. Sci. 40(1), 67–78 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Nuclear Radiation Detectors Research and ApplicationsAIBUBoluTurkey
  2. 2.Physics DepartmentAbant Izzet Baysal UniversityBoluTurkey

Personalised recommendations