Effect of ZnO/WO3 additives on sintering behavior and microwave dielectric properties of (Sr,Ca)TiO3–(Sm,Nd)AlO3 ceramics

  • Wentao Xie
  • Qinxian Jiang
  • Qinglin Cao
  • Xusong Xu
  • Hongqing Zhou
Article
  • 10 Downloads

Abstract

The effect of ZnO/WO3 additives on phase composition, microstructures, sintering behavior, and microwave dielectric properties of 0.7(Sr0.01Ca0.99)TiO3–0.3(Sm0.75Nd0.25)AlO3 (7SCT–3SNA) ceramics prepared via conventional solid-state route were systematically investigated. All the samples exhibited pure perovskite structures, and Ti4+ ions could be substituted by W6+ ions. While further increasing WO3 additives, the W6+ ions migrated into the lattice. The τ f values of samples first became more positive, and then tended to move toward negative direction with increasing WO3 addition. Moderate ZnO/WO3 additives not only effectively reduced the sintering temperature from 1500 to 1330 °C but also improved the dielectric properties of 7SCT–3SNA ceramics. The 0.50 wt% ZnO doped 7SCT–3SNA sample with 1.00 wt% of WO3, sintered at 1330 °C for 4 h, was measured to show optimum microwave dielectric properties, with an ε r of 45.12, a Q × f value of 51200 GHz (at 5.4 GHz), and τ f value of + 2.68 ppm/°C.

Notes

Acknowledgements

The authors are grateful to the support of Program for Advanced Research and Key Technology in Industry of Jiangsu Province (BE2015007-1), the Talent Introduction Project of Jiangsu University of Technology (KYY16030), the National Natural Science Foundation (No. 51475219), and Major project of natural science research in universities of Jiangsu: Research on key technology of material/structure integrated design of CFRP car body (16KJA460002).

References

  1. 1.
    A.K. Tyagi, Synthesis and characterization of ceramic dielectric resonator materials for microwave communication technology. Procedia Mater. Sci. 5, 1322–1331 (2014)CrossRefGoogle Scholar
  2. 2.
    I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006)Google Scholar
  3. 3.
    C.H. Su, Y.S. Wang, C.L. Huang, Characterization and microwave dielectric properties of Mg2YVO6 ceramic. J. Alloy. Compd. 641, 93–98 (2015)CrossRefGoogle Scholar
  4. 4.
    Z. Xiong, B. Tang, Z. Fang et al., Crystal structure, Raman spectroscopy and microwave dielectric properties of Ba3.75Nd9.5Ti18–z(Al1/2Nb1/2)zO54 ceramics. J. Alloy. Compd. 723, 580–588 (2017)CrossRefGoogle Scholar
  5. 5.
    L.X. Pang, D. Zhou, W.B. Li et al., High quality microwave dielectric ceramic sintered at extreme-low temperature below 200° and co-firing with base metal. J. Eur. Ceram. Soc. 37, 3073–3077 (2017)CrossRefGoogle Scholar
  6. 6.
    Z. Sun, L. Li, J. Li et al., Influence of Nb2O5 addition on dielectric properties and diffuse phase transition behavior of BaZr0.2Ti0.8O3 ceramics. Ceram. Int. 42, 10833–10837 (2016)CrossRefGoogle Scholar
  7. 7.
    Z. Dou, G. Wang, J. Jiang et al., Understanding microwave dielectric properties of (1-x)CaTiO3-xLaAlO3 ceramics in terms of A/B-site ionic-parameters. J. Adv. Ceram. 6, 20–26 (2017)CrossRefGoogle Scholar
  8. 8.
    F. Liang, M. Ni, W. Lu et al., Microwave dielectric properties and crystal structures of 0.7CaTiO3-0.3[LaxNd(1–x)]AlO3 ceramics. J. Alloy. Compd. 568, 11–15 (2013)CrossRefGoogle Scholar
  9. 9.
    B. Ullah, W. Lei, X.Q. Song et al., Phase-microstructure evolution and microwave dielectric characteristic of (1-x)(Sr0.5Ce0.5)TiO3 + δ-xNdAlO3 solid solution. J. Eur. Ceram. Soc. 37, 3051–3057 (2017)CrossRefGoogle Scholar
  10. 10.
    N. Ohon, R. Stepchuk, K. Blazhivskyi et al., Structural behaviour of solid solutions in the NdAlO3-SrTiO3 system. Nanoscale Res. Lett. 12, 148 (2017)CrossRefGoogle Scholar
  11. 11.
    C. Huang, X. Lu, M. Lu et al., Effect of CaO/SnO2 additives on the microstructure and microwave dielectric properties of SrTiO3-LaAlO3 ceramics. Ceram. Int. 43, 10624–10627 (2017)CrossRefGoogle Scholar
  12. 12.
    G.A. Ravi, F. Azough, R. Freer, Effect of Al2O3 on the structure and microwave dielectric properties of Ca0.7Ti0.7La0.3Al0.3O3. J. Eur. Ceram. Soc. 27, 2855–2859 (2007)CrossRefGoogle Scholar
  13. 13.
    L. Cheng, L. Liu, Q. Ma et al., Relationship between densification behavior and stabilization of quasi-liquid grain boundary layers in CuO-doped 0.7CaTiO3-0.3NdAlO3 microwave ceramics. Scripta Mater. 111, 102–105 (2016)CrossRefGoogle Scholar
  14. 14.
    B. Tang, Z. Fang, H. Li et al., Microwave dielectric properties of H3BO3-doped Ca0.61La0.39Al0.39Ti0.61O3 ceramics. J. Mater. Sci.: Mater. Electron. 26, 300–306 (2015)Google Scholar
  15. 15.
    X. Yang, X. Wang, L. Li, Effect of MgO on microstructure and microwave dielectric properties of 0.84CaTiO3-0.16Sm0.9Nd0.1AlO3 ceramics. Mater. Res. Bull. 67, 226–229 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Li, B. Yao, D. Xu et al., Low temperature sintering and microwave dielectric properties of 0.4Nd(Zn0.5Ti0.5)O3-0.6Ca0.61Nd0.26TiO3 ceramics with BaCu(B2O5) additive. J. Alloy. Compd. 663, 494–500 (2016)CrossRefGoogle Scholar
  17. 17.
    A.V. Shchenev, F. Kargin Yu, V.M. Skorikov, Khim Zh Neorg. 33, 2165 2167 (1988)Google Scholar
  18. 18.
    B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Tech. 8, 402–410 (1960)CrossRefGoogle Scholar
  19. 19.
    W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microw. Theory Tech. 18, 476–485 (1970)CrossRefGoogle Scholar
  20. 20.
    J. Li, C. Fan, S. Ran, Structure and microwave dielectric properties of (1-x)Nd(Zn0.5Ti0.5)O3-xCa0.61Nd0.26TiO3 ceramics. Ceram. Int. 42, 607–614 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Tamura, Microwave dielectric losses caused by lattice defects. J. Eur. Ceram. Soc. 26, 1775–1780 (2006)CrossRefGoogle Scholar
  22. 22.
    E.S. Kim, B.S. Chun, D.H. Kang, Effects of structural characteristics on microwave dielectric properties of (1-x)Ca0.85Nd0.1TiO3-xLnAlO3(Ln = Sm, Er and Dy) ceramics. J. Eur. Ceram. Soc. 27, 3005–3010 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wentao Xie
    • 1
  • Qinxian Jiang
    • 1
  • Qinglin Cao
    • 1
  • Xusong Xu
    • 1
  • Hongqing Zhou
    • 2
  1. 1.School of Mechanical EngineeringJiangsu University of TechnologyChangzhouChina
  2. 2.College of Material Science and EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations