Construction of hierarchical NiCo2S4 nanowires on 3D biomass carbon for high-performance supercapacitors

  • Hui Chen
  • Lei Zhao
  • Wei Fang
  • Weixin Li
  • Xuan He
  • Fuqing Zhang
Article
  • 16 Downloads

Abstract

One-dimensional/three-dimensional (1D/3D) hierarchical porous network configurations are composed of NiCo2S4 nanowires in-situ grown on biomass carbon (NiCo2S4/3DHC). The 3D biomass carbon (3DHC) with hierarchical micron- to nano-porous structure which is suitable for as a basal growth has been obtained from a pyrolysis active process of wood (Metasequoia). NiCo2S4 nanowires were produced on 3D biomass carbon via a facile hydrothermal method. The characterization and comparison of various properties of NiCo2S4/3DHC have been investigated systematically. A maximum specific capacitance of 765.8 F/g was observed for the NiCo2S4/3DHC electrode at 1 A/g in a 6 M KOH electrolyte solution, while 32.3 F/g for 3DHC at the same condition. The method reported here can be potentially applied to feasible construct 3D electrode configuration for energy storage devices using biomass as main raw materials.

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of Hubei Provincial China (2017CFC829, 2017CFB291), National Natural Science Foundation of China (61604110), China Postdoctoral Science Foundation (2015M572210, 2016M602376). This work was also financially supported by the China Scholarship Council for Dr Hui Chen.

Compliance with ethical standards

Conflict of interest

Authors have no conflict of interest.

References

  1. 1.
    M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2017)CrossRefGoogle Scholar
  2. 2.
    K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K.M. Hercule, C. Lin, C. Shi, Q. Wei, Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 8, 14264 (2017)CrossRefGoogle Scholar
  3. 3.
    R. Jia, F. Zhu, S. Sun, T. Zhai, H. Xia, Dual support ensuring high-energy supercapacitors via high-performance NiCo2S4@Fe2O3 anode and working potential enlarged MnO2 cathode. J. Power Source 341, 427–434 (2017)CrossRefGoogle Scholar
  4. 4.
    W. Yang, F. Ding, G. Shao, L. Sang, W. Yang, Z. Ma, Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate supercapacitors. Carbon 111, 419–427 (2017)CrossRefGoogle Scholar
  5. 5.
    Y.M. Fan, L.Z. Fan, W.L. Song, X. Li, Assembly of graphene aerogels into the 3D biomass-derived carbon frameworks on conductive substrates for flexible supercapacitors. Carbon 111, 658–666 (2017)CrossRefGoogle Scholar
  6. 6.
    G. Zhang, X. Xiao, B. Li, P. Gu, H. Xue, H. Pang, Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J. Mater. Chem. A 5, 8155–8186 (2017)CrossRefGoogle Scholar
  7. 7.
    Q. Yang, Z. Li, R. Zhang, L. Zhou, M. Shao, M. Wei, Carbon modified transition metal oxides/hydroxides nanoarrays toward high-performance flexible all-solid-state supercapacitors. Nano Energy 41, 408–416 (2017)CrossRefGoogle Scholar
  8. 8.
    M.O. Yanik, E.A. Yigit, Y.E. Akansu, E. Sahmetlioglu, Magnetic conductive polymer-graphene nanocomposites based supercapacitors for energy storage. Energy 138, 883–889 (2017)CrossRefGoogle Scholar
  9. 9.
    W. He, C. Wang, F. Zhuge, X. Deng, X. Xu, T. Zhai, Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 35, 242–250 (2017)CrossRefGoogle Scholar
  10. 10.
    Z. Ai, Z. Hu, Y. Liu, M. Fan, P. Liu, Novel 3D flower-like CoNi2S4/carbon nanotube composites as high-performance electrode materials for supercapacitors. New J. Chem. 40, 340–347 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Chen, S. Chen, H. Shao, C. Li, M. Fan, D. Chen, G. Tian, K. Shu, Hierarchical NiCo2S4 nanotube@NiCo2S4 nanosheet arrays on Ni foam for high-performance supercapacitors. Chem. Asian J. 11, 248 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Li, S. Xu, Y. Zhu, P. Yang, L. Wang, P.K. Chu, Heterostructured Ni(OH)2–Co(OH)2 composites on 3D ordered Ni-Co nanoparticles fabricated on microchannel plates for advanced miniature supercapacitor. J. Alloys Compd. 589, 364–371 (2014)CrossRefGoogle Scholar
  13. 13.
    H. Wan, L. Jia, Y. Ruan, L. Lin, P. Lu, J. Xiao, M. Ling, J. Jiang, Hierarchical configuration of NiCo2S4 nanotube@Ni–Mn layered double hydroxide arrays/three-dimensional graphene sponge as electrode materials for high-capacitance supercapacitors. ACS Appl. Mater. Interfaces 7, 15840–15847 (2015)CrossRefGoogle Scholar
  14. 14.
    H. Wan, J. Jiang, J. Yu, K. Xu, L. Miao, L. Zhang, H. Chen, Y. Ruan, NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm 15, 7649–7651 (2013)CrossRefGoogle Scholar
  15. 15.
    R. Jin, D. Liu, C. Liu, G. Liu, Hierarchical NiCo2S4 hollow spheres as a high performance anode for lithium ion batteries. RSC Adv. 5, 84711–84717 (2015)CrossRefGoogle Scholar
  16. 16.
    X. Wu, S. Li, B. Wang, J. Liu, M. Yu, NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries. Phys. Chem. Chem. Phys. 18, 4505–4512 (2016)CrossRefGoogle Scholar
  17. 17.
    Z. Li, X. Ji, J. Han, Y. Hu, R. Guo, NiCo2S4 nanoparticles anchored on reduced graphene oxide sheets: in-situ synthesis and enhanced capacitive performance. J. Colloid Interface Sci. 477, 46–53 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Peng, L. Li, C. Li, H. Tan, R. Cai, H. Yu, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q. Yan, In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chem. Commun. 49, 10178–10180 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Shen, P. Dong, R. Baines, X. Xu, Z. Zhang, P.M. Ajayan, M. Ye, Controlled synthesis and comparison of NiCo2S4/graphene/2D TMD ternary nanocomposites for high-performance supercapacitors. Chem. Commun. 52, 9251–9254 (2016)CrossRefGoogle Scholar
  20. 20.
    R. Zou, Z. Zhang, M.F. Yuen, M. Sun, J. Hu, C.-S. Lee, W. Zhang, Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries. NPG Asia Mater. 7, e195 (2015)CrossRefGoogle Scholar
  21. 21.
    W. Yang, L. Chen, J. Yang, X. Zhang, C. Fang, Z. Chen, L. Huang, J. Liu, Y. Zhou, Z. Zou, One-step growth of 3D CoNi2S4 nanorods and cross-linked NiCo2S4 nanosheet arrays on carbon paper as anodes for high-performance lithium ion batteries. Chem. Commun. 52, 5258–5261 (2016)CrossRefGoogle Scholar
  22. 22.
    J.-G. Wang, D. Jin, R. Zhou, C. Shen, K. Xie, B. Wei, One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. J. Power Sources 306, 100–106 (2016)CrossRefGoogle Scholar
  23. 23.
    Y. Tao, L. Ruiyi, Z. Lin, M. Chenyang, L. Zaijun, Three-dimensional electrode of Ni/Co layered double hydroxides@NiCo2S4@graphene@Ni foam for supercapacitors with outstanding electrochemical performance. Electrochim. Acta 176, 1153–1164 (2015)CrossRefGoogle Scholar
  24. 24.
    H. Wan, J. Liu, Y. Ruan, L. Lv, L. Peng, X. Ji, L. Miao, J. Jiang, Hierarchical configuration of NiCo2S4 Nanotube@Ni-Mn layered double hydroxide arrays/three-dimensional graphene sponge as electrode materials for high-capacitance supercapacitors. ACS Appl. Mater. Interfaces 7, 15840–15847 (2015)CrossRefGoogle Scholar
  25. 25.
    Y. Wang, L. Wang, B. Wei, Q. Miao, Y. Yuan, Z. Yang, W. Fei, Electrodeposited nickel cobalt sulfide nanosheet arrays on 3D-graphene/Ni foam for high-performance supercapacitors. RSC Adv. 5, 100106–100113 (2015)CrossRefGoogle Scholar
  26. 26.
    L. Shen, J. Wang, G. Xu, H. Li, H. Dou, X. Zhang, NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv. Energy Mater. 5, 1400977 (2015)CrossRefGoogle Scholar
  27. 27.
    L. Muniandy, F. Adam, A.R. Mohamed, E.P. Ng, The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Mater. 197, 316–323 (2014)CrossRefGoogle Scholar
  28. 28.
    X. Liu, Z. Wu, Y. Yin, Hierarchical NiCo2S4@ PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors. Chem. Eng. J. 323, 330–339 (2017)CrossRefGoogle Scholar
  29. 29.
    A.C. Martins, O. Pezoti, A.L. Cazetta, K.C. Bedin, D.A. Yamazaki, G.F. Bandoch, T. Asefa, J.V. Visentainer, V.C. Almeida, Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chem. Eng. J. 260, 291–299 (2015)CrossRefGoogle Scholar
  30. 30.
    X. He, Q. Liu, J. Liu, R. Li, H. Zhang, R. Chen, J. Wang, High-performance all-solid-state asymmetrical supercapacitors based on petal-like NiCo2S4/polyaniline nanosheets. Chem. Eng. J. 325, 134–143 (2017)CrossRefGoogle Scholar
  31. 31.
    F. Wu, R. Huang, D. Mu, B. Wu, Y. Chen, Controlled synthesis of graphitic carbon-encapsulated α-Fe2O3 nanocomposite via low-temperature catalytic graphitization of biomass and its lithium storage property. Electrochim. Acta 187, 508–516 (2016)CrossRefGoogle Scholar
  32. 32.
    Y. Yang, D. Cheng, S. Chen, Y. Guan, J. Xiong, Construction of hierarchical NiCo2S4@Ni(OH)2 core-shell hybrid nanosheet arrays on Ni foam for high-performance aqueous hybrid supercapacitors. Electrochim. Acta 193, 116–127 (2016)CrossRefGoogle Scholar
  33. 33.
    L. Li, Z. Dai, Y. Zhang, J. Yang, W. Huang, X. Dong, Carbon@ NiCo2S4 nanorods: an excellent electrode material for supercapacitors. RSC Adv. 5, 83408–83414 (2015)CrossRefGoogle Scholar
  34. 34.
    A. Gutierrez-Pardo, J. Ramírez-Rico, R. Cabezas-Rodríguez, J. Martínez-Fernández, Effect of catalytic graphitization on the electrochemical behavior of wood derived carbons for use in supercapacitors. J. Power Sources 278, 18–26 (2015)CrossRefGoogle Scholar
  35. 35.
    R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, Y. Yamauchi, Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano 9, 6288–6296 (2015)CrossRefGoogle Scholar
  36. 36.
    X.-L. Wu, T. Wen, H.-L. Guo, S. Yang, X. Wang, A.-W. Xu, Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7, 3589–3597 (2013)CrossRefGoogle Scholar
  37. 37.
    P. Nitnithiphrut, M. Thabuot, V. Seithtanabutara, Fabrication of composite supercapacitor containing para wood-derived activated carbon and TiO2. Energy Procedia 138, 116–121 (2017)CrossRefGoogle Scholar
  38. 38.
    Y. Wang, L.D. Wang, B. Wei, Q. Miao, Y. Yuan, Z. Yang, W. Fei, Electrodeposited nickel cobalt sulfide nanosheet arrays on 3D-graphene/Ni foam for high-performance supercapacitors. RSC Adv. 5, 100106–100113 (2015)CrossRefGoogle Scholar
  39. 39.
    X. Liu, F. Wei, Y. Sui, J. Qi, Y. He, Q. Meng, Polyhedral ternary oxide FeCo2O4: A new electrode material for supercapacitors. J. Alloys Compd. 735, 1339–1343 (2018)CrossRefGoogle Scholar
  40. 40.
    R. Wang, Y. Sui, S. Huang, Y. Pu, P. Cao, High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem. Eng. J. 331, 527–535 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science & TechnologyWuhanPeople’s Republic of China
  2. 2.HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, College of Chemical Engineering and TechnologyWuhan University of Science & TechnologyWuhanPeople’s Republic of China

Personalised recommendations