Simulation and fabrication of N-polar GaN-based blue-green light-emitting diodes with p-type AlGaN electron blocking layer

  • Gaoqiang Deng
  • Yuantao Zhang
  • Ye Yu
  • Long Yan
  • Pengchong Li
  • Xu Han
  • Liang Chen
  • Degang Zhao
  • Guotong Du
Article
  • 54 Downloads

Abstract

N-polar GaN-based blue-green light-emitting diodes (LEDs) with p-AlGaN electron blocking layer (EBL) were numerically investigated by simulation and experimentally grown on vicinal C-face SiC substrates by metal–organic chemical vapor deposition. By numerical simulation, we can find that p-AlGaN EBL in N-polar LEDs is able to play a more important role in blocking electron overflow than that in Ga-polar LEDs due to the reversed polarization, which leads to a high output power and internal quantum efficiency. Besides, the holes injection efficiency is enhanced in N-polar LED, resulting in a lower turn-on voltage. In experimental studies, N-polar LEDs based on different numbers of quantum wells were grown on vicinal C-face n-SiC substrates. When a forward bias is applied to the epitaxial N-polar LED with two quantum wells, a strong blue-green emission located at 480 nm can be observed. This work indicates that N-polar group-III nitrides have great potential in the application of optoelectronic devices.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program (No. 2016YFB0400103), the National Natural Science Foundation of China (Nos. 61674068 and 61734001), the Science and Technology Developing Project of Jilin Province (20150519004JH, 20160101309JC, and 20170204045GX).

References

  1. 1.
    S. Nakamura, M. Senoh, N. Iwasa, S.I. Nagahama, Appl. Phys. Lett. 67, 1868 (1995)CrossRefGoogle Scholar
  2. 2.
    S. Nakamura, M. Senoh, S.I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, Jpn. J. Appl. Phys. 36, L1568 (1997)CrossRefGoogle Scholar
  3. 3.
    Z.F. Shi, Y.T. Zhang, J.Z. Zhang, H. Wang, B. Wu, X.P. Cai, X.J. Cui, X. Dong, H.W. Liang, B.L. Zhang, G.T. Du, Appl. Phys. Lett. 103, 021109 (2013)CrossRefGoogle Scholar
  4. 4.
    Z.F. Shi, X.C. Xia, W. Yin, S.K. Zhang, H. Wang, L. Zhao, X. Dong, B.L. Zhang, G.T. Du, Appl. Phys. Lett. 100, 101112 (2012)CrossRefGoogle Scholar
  5. 5.
    P.G. Moses, M. Miao, Q.M. Yan, C.G. Van de Walle, J. Chem. Phys. 134, 084703 (2011)CrossRefGoogle Scholar
  6. 6.
    Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, T. Mukai, J. Phys. D 43, 354002 (2010)CrossRefGoogle Scholar
  7. 7.
    P. Stauss, A. Walter, J. Baur, B. Hahn, Presented at 7th Int. Conf. Nitride Semiconductors (ICNS7), (2007)Google Scholar
  8. 8.
    K. Lekhal, S. Hussain, P.D. Mierry, P. Vennéguès, M. Nemoz, J.M. Chauveau, B. Damilano, J. Cryst. Growth 434, 25 (2016)CrossRefGoogle Scholar
  9. 9.
    S. Saito, R. Hashimoto, J. Hwang, S. Nunoue, Appl. Phys. Express 6, 111003 (2013)CrossRefGoogle Scholar
  10. 10.
    T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, I. Akasaki, J. Appl. Phys. 36, L382 (1997)CrossRefGoogle Scholar
  11. 11.
    S.C. Ling, T.C. Lu, S.P. Chang, J.R. Chen, H.C. Kuo, S.C. Wang, Appl. Phys. Lett. 96, 231101 (2010)CrossRefGoogle Scholar
  12. 12.
    J.L. Liu, J.L. Zhang, G.X. Wang, C.L. Mo, L.Q. Xu, J. Ding, Z.J. Quan, X.L. Wang, S. Pan, C.D. Zheng, X.M. Wu, W.Q. Fang, F.Y. Jiang, Chin. Phys. B 24, 067804 (2015)CrossRefGoogle Scholar
  13. 13.
    S. Keller, N.A. Fichtenbaum, M. Furukawa, J.S. Speck, S.P. DenBaars, U.K. Mishra, Appl. Phys. Lett. 90, 191908 (2007)CrossRefGoogle Scholar
  14. 14.
    F. Akyol, D.N. Nath, S. Krishnamoorthy, P.S. Park, S. Rajan, Appl. Phys. Lett. 100, 111118 (2012)CrossRefGoogle Scholar
  15. 15.
    S.W. Feng, P.H. Liao, B. Leung, J. Han, F.W. Yang, H.C. Wang, J. Appl. Phys. 118, 043104 (2015)CrossRefGoogle Scholar
  16. 16.
    T. Matsuoka, Y. Kobayashi, H. Takahata, T. Mitate, S. Mizuno, A. Sasaki, M. Yoshimoto, T. Ohnishi, M. Sumiya, Phys. Status Solidi (b) 243, 1446 (2006)CrossRefGoogle Scholar
  17. 17.
    J.H. Choi, K. Shojiki, T. Tanikawa, T. Hanada, R. Katayama, T. Matsuoka, Phys. Status Solidi (c) 10, 417 (2013)CrossRefGoogle Scholar
  18. 18.
    K. Shojiki, J.H. Choi, T. Iwabuchi, N. Usami, T. Tanikawa, S. Kuboya, T. Hanada, R. Katayama, T. Matsuoka, Appl. Phys. Lett. 106, 222102 (2015)CrossRefGoogle Scholar
  19. 19.
    Z.Y. Lin, J.C. Zhang, R.T. Cao, W. Ha, S. Zhang, X. Chen, J.D. Yan, S.R. Xu, Y. Zhao, L. Li, Y. Hao, J. Cryst. Growth 384, 96 (2013)CrossRefGoogle Scholar
  20. 20.
    C.T. Zhong, G.Y. Zhang, Rare Met. 36, 709 (2014)CrossRefGoogle Scholar
  21. 21.
    Z.Y. Lin, J.C. Zhang, S.R. Xu, Z.B. Chen, S.Y. Yang, K. Tian, X.J. Su, X.F. Shi, Y. Hao, Appl. Phys. Lett. 105, 082114 (2014)CrossRefGoogle Scholar
  22. 22.
    K. Shojiki, T. Tanikawa, J.H. Choi, S. Kuboya, T. Hanada, R. Katayama, T. Matsuoka, Appl. Phys. Express 8, 061005 (2015)CrossRefGoogle Scholar
  23. 23.
    F. Akyol, D.N. Nath, E. Gür, P.S. Park, S. Rajan, Jpn. J. Appl. Phys. 20, 052101 (2011)CrossRefGoogle Scholar
  24. 24.
    J. Song, S.P. Chang, C. Zhang, T.C. Hsu, J. Han, ACS Appl. Mater. Interfaces 7, 273 (2015)CrossRefGoogle Scholar
  25. 25.
    P. Reddy, I. Bryan, Z. Bryan, J. Tweedie, S. Washiyama, R. Kirste, S. Mita, R. Collazo, Z. Sitar, Appl. Phys. Lett. 107, 091603 (2015)CrossRefGoogle Scholar
  26. 26.
    Y.K. Kuo, B.T. Liou, M.L. Chen, S.H. Yen, C.Y. Lin, Opt. Commun. 231, 395 (2004)CrossRefGoogle Scholar
  27. 27.
    H. Zhang, E.J. Miller, E.T. Yu, C. Poblenz, J.S. Speck, Appl. Phys. Lett. 84, 4644 (2004)CrossRefGoogle Scholar
  28. 28.
    L.W. Cheng, C.Y. Xu, Y. Sheng, C.S. Xia, W.D. Hu, W. Lu, Opt. Quant. Electron. 44, 75 (2012)CrossRefGoogle Scholar
  29. 29.
    J. Hader, J.V. Moloney, B. Pasenow, S.W. Koch, M. Sabathil, N. Linder, S. Lutgen, Appl. Phys. Lett. 92, 261103 (2008)CrossRefGoogle Scholar
  30. 30.
    I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94, 3675 (2003)CrossRefGoogle Scholar
  31. 31.
    X.D. Wang, W.D. Hu, X.S. Chen, W. Lu, IEEE Trans. Electron. Dev. 59, 1393 (2012)CrossRefGoogle Scholar
  32. 32.
    U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, P. Schlotter, Appl. Phys. Lett. 72, 1326 (1998)CrossRefGoogle Scholar
  33. 33.
    W. Liu, D.G. Zhao, D.S. Jiang, P. Chen, Z.S. Liu, J.J. Zhu, M. Shi, D.M. Zhao, X. Li, J.P. Liu, S.M. Zhang, H. Wang, H. Yang, Y.T. Zhang, G.T. Du, Opt. Express 23, 15935 (2015)CrossRefGoogle Scholar
  34. 34.
    D.P. Han, C.H. Oh, H. Kim, J.I. Shim, K.S. Kim, D.S. Shin, IEEE Trans. Electron. Dev. 62, 587 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gaoqiang Deng
    • 1
  • Yuantao Zhang
    • 1
  • Ye Yu
    • 1
  • Long Yan
    • 1
  • Pengchong Li
    • 1
  • Xu Han
    • 1
  • Liang Chen
    • 1
  • Degang Zhao
    • 2
  • Guotong Du
    • 1
  1. 1.State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina
  2. 2.State Key Laboratory of Integrated Optoelectronics, Institute of SemiconductorsChinese Academy of ScienceBeijingChina

Personalised recommendations