One-pot synthesis of highly luminescent and color-tunable water-soluble Mn:ZnSe/ZnS core/shell quantum dots by microwave-assisted method
Abstract
In this paper, microwave-assisted method was used for rapid synthesis of highly luminescent Mn-doped ZnSe/ZnS core/shell nanocrystals in aqueous phase. A series of nanocrystals with different size was prepared in 1 h under proper condition. The as-prepared Mn-doped ZnSe/ZnS QDs exhibit the emission in the range of 565–602 nm and the highest photoluminescence quantum yield reached up to 36.3% under the optimal reaction condition. The optical properties and structure of the Mn:ZnSe/ZnS QDs have been characterized by PL spectroscopy, UV–Vis, TEM, XRD and XPS. The effects of various experimental variables, including the reaction pressure, the pH value of reaction solution, the ratio of Zn to ligand (MPA), and the post-treatment on the optical properties of the Mn:ZnSe/ZnS QDs were investigated systematically. The as-prepared MPA coated Mn-doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg2+ ions in water, the result shows that the QD-based metal ions sensor possesses high sensitivity and selectivity, and could be applied for the quantification analysis of Hg2+ ions in water.
Notes
Acknowledgements
This study was financially supported by the National Natural Science Foundation (Grant Nos. 21505049) of P. R. China; the Development Program of Science and Technology of Jilin Province (20170520134JH); the Scientific Foundation for Young Scientists of Jilin Normal University (2014005 and 2014007).
Supplementary material
References
- 1.B.J. Marcel, M. Mario, G. Peter, W. Shimon, A.P. Alivisatos, Science 281, 2013 (1998)CrossRefGoogle Scholar
- 2.W.C.W. Chan, S.M. Nie, Science 281, 2016 (1998)CrossRefGoogle Scholar
- 3.M. Han, X. Gao, J.Z. Su, S.M. Nie, Nat. Biotechnol. 19, 631 (2001)CrossRefGoogle Scholar
- 4.I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Nat. Mater. 4, 435 (2005)CrossRefGoogle Scholar
- 5.J. Weng, J. Ren, Curr. Med. Chem. 13, 897 (2006)CrossRefGoogle Scholar
- 6.Q.J. Sun, Y.A. Wang, L.S. Li, D.Y. Wang, T. Zhu, J. Xu, C.H. Yang, Y.F. Li, Nat. Photonics 1, 717 (2007)CrossRefGoogle Scholar
- 7.N. Pradhan, X. Peng, J. Am. Chem. Soc. 129, 3339 (2007)CrossRefGoogle Scholar
- 8.H.Z. Wang, H. Nakamura, M. Uehara, Y. Yamaguchi, M. Miyazaki, H. Maeda, Adv. Funct. Mater. 15, 603 (2005)CrossRefGoogle Scholar
- 9.H.Z. Wang, H.Y. Li, M. Uehara, Y. Yamaguchi, H. Nakamura, M. Miyazaki, H. Shimizu, H. Maeda, Chem. Commun. 1, 48 (2004)CrossRefGoogle Scholar
- 10.M. Green, E. Howman, Chem. Commun. 7, 121 (2005)CrossRefGoogle Scholar
- 11.R. Bakalova, Z. Zhelev, H. Ohba, Y. Baba, J. Am. Chem. Soc. 127, 9328 (2005)CrossRefGoogle Scholar
- 12.Y.C. Wang, B. Wu, C.B. Yang, M.X. Liu, T.C. Sum, K.T. Yong, Small 12, 534 (2016)CrossRefGoogle Scholar
- 13.J. Heo, C.S. Hwang, Nanomaterials 6, 82 (2016)CrossRefGoogle Scholar
- 14.M. Anilkumar, K.R. Bindu, A.S. Saj, E.I. Anila, Chinese Phys. B 25, 088103 (2016)CrossRefGoogle Scholar
- 15.T. Kezuka, M. Konishi, T. Isobe, M. Senna, J. Lumin. 418, 87 (2000)Google Scholar
- 16.L. Cao, J. Zhang, S. Ren, S. Huang, Appl. Phys. Lett. 80, 4300 (2002)CrossRefGoogle Scholar
- 17.S. Ethiraj, N. Hebalkar, S.K. Kulkarni, R. Pasricha, J. Urban, C. Dem, M. Schmitt, W. Kiefer, L. Weinhardt, S. Joshi, R. Fink, C. Heske, E. Umbach, J. Chem. Phys. 118, 8945 (2003)CrossRefGoogle Scholar
- 18.N. Pradhan, D. Goorskey, J. Thessing, X. Peng, J. Am. Chem. Soc. 127, 17586 (2005)CrossRefGoogle Scholar
- 19.N. Pradhan, D.M. Battaglia, Y. Liu, X. Peng, Nano Lett. 7, 312 (2007)CrossRefGoogle Scholar
- 20.D.J. Norris, A.L. Efros, S.C. Erwin, Science 319, 1776 (2008)CrossRefGoogle Scholar
- 21.A. Aboulaich, M. Geszke, L. Balan, J. Ghanbaja, G. Medjahdi, R. Schneider, Inorg. Chem. 49, 10940 (2010)CrossRefGoogle Scholar
- 22.B.H. Dong, L.X. Cao, G. Su, W. Liu, J. Phys. Chem. C 116, 12258 (2012)CrossRefGoogle Scholar
- 23.H.F. Qian, X. Qiu, L. Liang, J.C. Ren, J. Phys. Chem. B 110, 9034 (2006)CrossRefGoogle Scholar
- 24.M.A. Correa-Duarte, M. Giersig, N.A. Kotov, L.M. Liz-Marzan, Langmuir 14, 6430 (1998)CrossRefGoogle Scholar
- 25.L. Li, H.F. Qian, J.C. Ren, Chem. Commun. 36, 528 (2005)CrossRefGoogle Scholar
- 26.D.M. Han, C.F. Song, X.Y. Li, Spectrosc Spect Anal. 30, 2331 (2010)Google Scholar
- 27.L.W. Jiang, J. Zhou, X.Z. Yang, X.N. Peng, H. Jiang, D.Q. Zhuo, L.D. Chen, X.F. Yu, Chem. Phys. Lett. 510, 135 (2011)CrossRefGoogle Scholar
- 28.J. Zhang, Q.H. Chen, W.L. Zhang, S.L. Mei, L.J. He, J.T. Zhu, G.P. Chen, R.Q. Guo, Appl. Surf. Sci. 351, 655 (2015)CrossRefGoogle Scholar
- 29.J.Q. Zhuang, X.D. Zhang, G. Wang, D.M. Li, W.S. Yang, T.J. Li, J. Mater. Chem. 13, 1853 (2003)CrossRefGoogle Scholar
- 30.P.T. Shao, Q.H. Zhang, Y.G. Li, H.Z. Wang, J. Mater. Chem. 21, 151 (2011)CrossRefGoogle Scholar
- 31.J.S. Wang, H.E. Smith, G.J. Brown, Mater. Chem. Phys. 154, 44 (2015)CrossRefGoogle Scholar
- 32.M. Massey, M. Wu, E.M. Conroy, W.R. Algar, Curr. Opin. Biotech. 34, 30 (2015)CrossRefGoogle Scholar
- 33.Y. Kim, C. Ippen, T. Greco, I. Jang, S. Park, M.S. Oh, C.J. Han, J. Lee, A. Wedel, J. Kim, Electron. Mater. Lett. 10, 479 (2014)CrossRefGoogle Scholar
- 34.T.G. Kryshtab, L.V. Borkovska, O.F. Kolomys, N.O. Korsunska, V.V. Strelchuk, L.P. Germash, K.Y. Pechers’ka, G. Chornokur, S.S. Ostapenko, C.M. Phelan, O.L. Stroyuk, Superlattice. Microst. 51, 353 (2012)CrossRefGoogle Scholar
- 35.W.G. Becker, A.J. Bard, J. Phys. Chem. 87, 4888 (1983)CrossRefGoogle Scholar
- 36.B.A. Du, C. Liu, Y.H. Cao, L.N. Chen, Spectrosc. Spect. Anal. 34, 1070 (2014)Google Scholar