The effect of polystyrene sulfonate on the thermoelectric properties of polyaniline/silver nanowires nanocomposites

  • Fei-Peng Du
  • Qian-Qian Li
  • Ping Fu
  • Yun-Fei Zhang
  • Yan-Guang Wu
Article
  • 52 Downloads

Abstract

Polyaniline:polystyrene sulfonate/silver nanowires nanocomposites (PANI:PSS/AgNWs) have been fabricated via incorporating AgNWs into PANI:PSS with simple physical mixing. The water-dispersity, microstructure and thermoelectric properties of the nanocomposites were investigated. The incorporation of PSS improved the water-dispersity of PANI and played an important role in the enhanced thermoelectric performance of the nanocomposites. PSS effectively improved the Seebeck coefficient of the nanocomposites. The maximum power factor of 0.85 µW/mK2 was achieved with the addition of 9.0 wt% AgNWs at a PANI:PSS mass ratio of 1:5, which is 6, 28 and 21 times higher than that of PANI:PSS, PANI and PANI/AgNWs, respectively. Therefore, the incorporation of PSS provided an effective way to improve the thermoelectric properties of conductive polymer composites.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51373126), the Scientific Research Fund Project of Wuhan Institute of Technology (K201779), the Undergraduate Innovation and Entrepreneurship Training Program Project of HuBei Provincial (201710490038) and Postgraduate education innovation fund of Wuhan Institute of Technology (CX2016014). The support is gratefully acknowledged.

Supplementary material

10854_2018_8882_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1448 KB)

References

  1. 1.
    G.D. Mahan, APL Mater. 4, 104806–104814 (2016)CrossRefGoogle Scholar
  2. 2.
    G.H. Kim, L. Shao, K. Zhang et al., Nat. Mater. 12, 719–723 (2013)CrossRefGoogle Scholar
  3. 3.
    Z. Fan, D. Du, H. Yao et al., ACS Appl. Mater. Interfaces 9, 11732–11738 (2017)CrossRefGoogle Scholar
  4. 4.
    B.T. McGrail, A. Sehirlioglu, E. Pentzer, Angew. Chem. Int. Ed. 54, 1710–1723 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Culebras, C.M. Gómez, A. Cantarero, Materials 7, 6701–6732 (2014)CrossRefGoogle Scholar
  6. 6.
    M. He, F. Qiu, Z. Lin, Energy Environ. Sci. 6, 1352–1361 (2013)CrossRefGoogle Scholar
  7. 7.
    S.N. Patel, M.L. Chabiny, J. Appl. Polym. Sci.  https://doi.org/10.1002/app.44403 (2017)Google Scholar
  8. 8.
    Q. Wang, Q. Yao, J. Chang et al., J. Mater. Chem. 22, 17612–17618 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, S.M. Zhang, Y. Deng, J. Mater. Chem. A 4, 3554–3559 (2016)CrossRefGoogle Scholar
  10. 10.
    L. Wang, Q. Yao, J. Xiao et al., Chem. Asian J. 11, 1955–1962 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Wang, K.F. Cai, S. Shen, Org. Electron. 17, 151–158 (2015)CrossRefGoogle Scholar
  12. 12.
    Z. Golsanamlou, M.B. Tagani, H.R. Soleimania, Phys. Chem. Chem. Phys. 17, 13466–13471 (2015)CrossRefGoogle Scholar
  13. 13.
    Q. Yao, Q. Wang, L. Wang et al., J. Mater. Chem. A 2, 2634–2640 (2014)CrossRefGoogle Scholar
  14. 14.
    W.F. Yang, H. Xu, Y.Y. Li et al., J. Electron. Mater. 46, 4815–4824 (2017)CrossRefGoogle Scholar
  15. 15.
    L. Wang, H. Bi, Q. Yao et al., Compos. Sci. Technol. 150, 135–140 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Mitra, K. Kargupt, S. Ganguly et al., Synth. Met. 228, 25–31 (2017)CrossRefGoogle Scholar
  17. 17.
    L. Wang, Q. Yao, W. Shi, Mater. Chem. Front. 1, 741–748 (2017)CrossRefGoogle Scholar
  18. 18.
    F. Roussel, R.C.Y. King, M. Kuriakose et al., Synth. Met. 199, 196–204 (2015)CrossRefGoogle Scholar
  19. 19.
    W. Wang, S. Sun, S. Gu et al., Rsc Adv. 4, 26810–26816 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Bharti, A. Singh, S. Samanta et al., Energy Convers. Manage. 144, 143–152 (2017)CrossRefGoogle Scholar
  21. 21.
    X. Sun, Y. Wei, J. Li et al., Sci. China Mater. 60, 159–166 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Yoshida, N. Toshima, J. Electron. Mater. 45, 2914–2919 (2016)CrossRefGoogle Scholar
  23. 23.
    J.Q. Cao, Q. Sun, F.F. Miao et al., Mater. Res. Innovations 18, 540–543 (2014)Google Scholar
  24. 24.
    L. Li, L. Ferng, Y. Wei et al., J. Colloid Interface Sci. 381, 11–16 (2012)CrossRefGoogle Scholar
  25. 25.
    C.W. Lee, Y.H. Seo, S.H. Lee, Macromolecules 37, 4070–4074 (2004)CrossRefGoogle Scholar
  26. 26.
    K. Uh, T. Kim, C.W. Lee et al., Macromol. Mater. Eng. 301, 1320–1326 (2016)CrossRefGoogle Scholar
  27. 27.
    W.A. Marmisollé, E. Maza, S. Moya, O. Azzaroni, Electrochim. Acta 210, 435–444 (2016)CrossRefGoogle Scholar
  28. 28.
    K.R. Das, M.J. Antony, Polymer 87, 215–225 (2016)CrossRefGoogle Scholar
  29. 29.
    B. Massoumi, M. Shafagh-kalvanagh, M. Jayman, J. Appl. Polym. Sci.  https://doi.org/10.1002/app.44720 (2017)Google Scholar
  30. 30.
    P.J. Kinlen, J. Liu, Y. Ding, C.R. Graham et al., Macromolecules 31, 1735–1744 (1998)CrossRefGoogle Scholar
  31. 31.
    H.D. Tran, D. Li, R.B. Kaner, Adv. Mater. 21, 1487–1499 (2009)CrossRefGoogle Scholar
  32. 32.
    Q. Yu, J. Phys. Chem. C 120, 27628–27634 (2016)CrossRefGoogle Scholar
  33. 33.
    R. Shabanlouei, P.N. Moghadam, N. Movagharnezhad et al., Polym. Sci. Ser. B 58, 574–579 (2016)CrossRefGoogle Scholar
  34. 34.
    J.C.C. Wu, S. Ray, M. Gizdavic-Nikolaidis et al., Synth. Met. 217, 202–209 (2016)CrossRefGoogle Scholar
  35. 35.
    J. Luo, S. Jiang, Y. Wu et al., J. Polym. Sci. Part A 50, 4888–4894 (2012)CrossRefGoogle Scholar
  36. 36.
    C.W. Kuo, T.C. Wen, Eur. Polym. J. 44, 3393–3401 (2008)CrossRefGoogle Scholar
  37. 37.
    Y.F. Li, Y.P. Wang, X.H. Gao et al., J. Macromol. Sci. Part A A43, 405–415 (2006)CrossRefGoogle Scholar
  38. 38.
    Y.R. Park, J.H. Doh, K. Shin et al., Org. Electron. 19, 131–139 (2015)CrossRefGoogle Scholar
  39. 39.
    J. Jang, J. Ha, J. Cho, Adv. Mater. 19, 1772–1775 (2007)CrossRefGoogle Scholar
  40. 40.
    S. Cho, J.S. Lee, J. Jun et al., Nanoscale 6, 15181–15195 (2014)CrossRefGoogle Scholar
  41. 41.
    Q. Yao, Q. Wang, L. Wang et al., Energy Environ. Sci. 7, 3801–3807 (2014)CrossRefGoogle Scholar
  42. 42.
    J. Chen, L. Wang, X. Gui et al., Carbon 114, 1–7 (2017)CrossRefGoogle Scholar
  43. 43.
    Y. Liu, Z.J. Song, Q.H. Zhang et al., RSC Adv. 5, 45106–45112 (2015)CrossRefGoogle Scholar
  44. 44.
    C. Hu, T. Kawamoto, H. Tanaka et al., J. Mater. Chem. C 4, 10293–10300 (2016)CrossRefGoogle Scholar
  45. 45.
    Y. Sun, B. Gates, B. Mayers et al., Nano Lett. 2, 165–168 (2002)CrossRefGoogle Scholar
  46. 46.
    C.A. Amarnath, N. Venkatesan, M. Doble et al., J. Mater. Chem. B 2, 5012–5019 (2014)CrossRefGoogle Scholar
  47. 47.
    F.P. Du, J.J. Wang, C.Y. Tang et al., Nanotechnology 23, 475704 (2012)CrossRefGoogle Scholar
  48. 48.
    D.S. Patil, S.A. Pawar, J.H. Kim et al., Electrochim. Acta 213, 680–690 (2016)CrossRefGoogle Scholar
  49. 49.
    S. Kim, B. Kim, S.M. Cho et al., Mater. Lett. 209, 433–436 (2017)CrossRefGoogle Scholar
  50. 50.
    J. Wu, L. Yin, Appl. Mater. Interfaces 3, 4354–4362 (2011)CrossRefGoogle Scholar
  51. 51.
    C.A. Amarnatha, J. Kima, K. Kim, Polymer 49, 432–437 (2008)CrossRefGoogle Scholar
  52. 52.
    P. Bober, J. Stejskal, M. Trchová et al., React. Funct. Polym. 70, 656–662 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fei-Peng Du
    • 1
  • Qian-Qian Li
    • 1
  • Ping Fu
    • 1
  • Yun-Fei Zhang
    • 1
  • Yan-Guang Wu
    • 1
  1. 1.Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and EngineeringWuhan Institute of TechnologyWuhanChina

Personalised recommendations