Localize current burst in modified carbon nanotube/polyaniline composite fibers mat electrode miniaturized resistance and improved rate capability for solid-state supercapacitor

Article
  • 46 Downloads

Abstract

Polyaniline-modified carbon nanotube composite nanofibers are deposited on carbon paper substrate using two steps template-free chemical oxidative deposition process. Regular nanofibers mat was observed through microscopy, and suggested better dispersion and interfacial adhesion ability of modified CNT with PANI matrix, which provided distinct architectural pores. Surface roughness was estimated using AFM surface topography image and decrease in roughness was observed in MPCNT nanofibers mat than PCNT nanofibers mat. Also, decrease in surface roughness due to reduction in agglomeration increased current burst and conducting pathway, which is confirmed in localized current profile plot. In addition, XPS results confirmed the improvement of intrinsic oxidation state, doping degree and conductivity in MPCNT than PC0. Fabricated MPCNT electrode miniaturized resistance and demonstrated highest specific capacitance ~ 1302 F g−1 at current density 0.5 mA cm−2 with good cyclic stability (82% retention even after 6000 cycles). Also, MPCNT electrode exhibited high energy density (250 Wh kg−1) and power density (148 W kg−1). Moreover, develop electrode materials are used to fabricate an asymmetric supercapacitor device for demonstrating the applicability.

Notes

Acknowledgements

The authors acknowledge the DIAT (DU) for characterization support.

References

  1. 1.
    U. Patil, S.C. Lee, S. Kulkarni, J.S. Sohn, M.S. Nam, S. Han, S.C. Jun, Nanoscale 7, 6999–7021 (2015)CrossRefGoogle Scholar
  2. 2.
    J.R. Miller, P. Simon, Science 321, 847–854 (2008)CrossRefGoogle Scholar
  3. 3.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  4. 4.
    B.E. Conway, W.G. Pell, J. Solid State Electrochem. 7, 637–644 (2003)CrossRefGoogle Scholar
  5. 5.
    J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, J. Power Sources 101, 109–116 (2001)CrossRefGoogle Scholar
  6. 6.
    W. Chen, L. Yan, P.R. Bangal, Carbon 48, 1146–1152 (2010)CrossRefGoogle Scholar
  7. 7.
    Y. Rangom, X. Tang, L.F. Nazar, ACS Nano 9, 7248–7255 (2015)CrossRefGoogle Scholar
  8. 8.
    H. Xu, X. Li, G. Wang, J. Power Sources 294, 16–21 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, M. Li, L. Yang, K. Yi, Z. Li, J. Yao, J. Solid State Electrochem. 18, 2139–2147 (2014)CrossRefGoogle Scholar
  10. 10.
    P. Oliva, J. Leonardi, J.F. Laurent, C. Delmas, J.J. Braconnier, M. Figlarz, F. Fievet, A. De Guibert, J. Power Sources 8, 229–255 (1982)CrossRefGoogle Scholar
  11. 11.
    S. Vijayakumar, S. Nagamuthu, G. Muralidharan, ACS Appl. Mater. Interfaces 5, 2188–2196 (2013)CrossRefGoogle Scholar
  12. 12.
    S.C. Wang, Y. Ruan, C. Wang, J. Jiang, J. Mater. Chem. A 4, 14509–14538 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Hu, K. Chang, M. Lin, Y. Wu, Nano Lett. 6, 2–7 (2006)Google Scholar
  14. 14.
    J. Li, H. Xie, Y. Li, J. Liu, Z. Li, J. Power Sources 196, 10775–10781 (2011)CrossRefGoogle Scholar
  15. 15.
    P. Sekar, B. Anothumakkool, S. Kurungot, ACS Appl. Mater. Interfaces 7, 7661–7669 (2015)CrossRefGoogle Scholar
  16. 16.
    H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S. Wang, J. Power Sources 190, 578–586 (2009)CrossRefGoogle Scholar
  17. 17.
    J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Carbon 48, 487–493 (2010)CrossRefGoogle Scholar
  18. 18.
    F. Huang, F. Lou, D. Chen, ChemSusChem 5, 888–895 (2012)CrossRefGoogle Scholar
  19. 19.
    Q.Y. Liao, S.Y. Li, H. Cui, C. Wang, J. Mater. Chem. A 4, 8830–8836 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Dai, W. Xu, Y. Xin, M. Wang, X. Gun, D. Guo, C. Hu, Nano Energy 19, 363–372 (2016)CrossRefGoogle Scholar
  21. 21.
    Q. Liao, N. Li, S. Jin, G. Yang, C. Wang, ACS Nano 9, 5310–5317 (2015)CrossRefGoogle Scholar
  22. 22.
    S.K. Mondal, K. Barai, N. Munichandraiah, Electrochim. Acta 52, 3258–3264 (2007)CrossRefGoogle Scholar
  23. 23.
    Y. Li, X. Zhao, Q. Xu, Q. Zhang, D. Chen, Langmuir 27, 6458–6463 (2011)CrossRefGoogle Scholar
  24. 24.
    H. Kwon, D. Hong, I. Ryu, S. Yim, ACS Appl. Mater. Interfaces 9, 7412–7423 (2017)CrossRefGoogle Scholar
  25. 25.
    N. Kumar, P.K. Sahoo, H.S. Panda, Energy Technol. 5, 253–266 (2017)CrossRefGoogle Scholar
  26. 26.
    L. Wu, Y. Shen, L. Yu, J. Xi, X. Qiu, Nano Energy 28, 19–28 (2016)CrossRefGoogle Scholar
  27. 27.
    L. Wang, Y. Ye, X. Lu, Z. Wen, Z. Li, H. Hou, Y. Song, Sci. Rep. 3, 3568–3577 (2013)CrossRefGoogle Scholar
  28. 28.
    R.R. Salunkhe, S.-H. Hsu, K.C.W. Wu, Y. Yamauchi, ChemSusChem 7, 1551–1556 (2014)CrossRefGoogle Scholar
  29. 29.
    D.S. Patil, S.A. Pawar, R.S. Devan, S.S. Mali, M.G. Gang, Y.R. Ma, C.K. Hong, J.H. Kim, P.S. Patil, J. Electroanal. Chem. 724, 21–28 (2014)CrossRefGoogle Scholar
  30. 30.
    C. Dhand, S.K. Arya, S.P. Singh, B.P. Singh, M. Datta, B.D. Malhotra, Carbon 46, 1727–1735 (2008)CrossRefGoogle Scholar
  31. 31.
    C. Zhang, C. Wang, D. Zhang, S. Dai, Y. Xi, W. Xu, J. Chen, N. Bai, Y. Yang, Electrochem. Acta. 252, 498–506 (2017)CrossRefGoogle Scholar
  32. 32.
    Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, L. Liu, Energy Fuels 27, 568–575 (2013)CrossRefGoogle Scholar
  33. 33.
    H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Nanoscale 2, 2164–2170 (2010)CrossRefGoogle Scholar
  34. 34.
    H.S. Fan, H. Wang, N. Zhao, J. Xu, F. Pan, Sci. Rep. 4, 1–7 (2014)Google Scholar
  35. 35.
    L. Shi, R.-P. Liang, J.-D. Qiu, J. Mater. Chem. 22, 17196–17203 (2012)CrossRefGoogle Scholar
  36. 36.
    V.A. Online, Z. Tong, Y. Yang, J. Wang, J. Zhao, B. Su, Y. Li, J. Mater. Chem. A 2, 4642–4651 (2014)CrossRefGoogle Scholar
  37. 37.
    P.R. Somani, R. Marimuthu, A.B. Mandale, Polymer 42, 2991–3001 (2001)CrossRefGoogle Scholar
  38. 38.
    S. Dhibar, C.K. Das, Ind. Eng. Chem. Res. 53, 3495–3508 (2014)CrossRefGoogle Scholar
  39. 39.
    J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, F. Wei, J. Power Sources 195, 3041–3045 (2010)CrossRefGoogle Scholar
  40. 40.
    Z. Yu, L. Tetard, L. Zhai, J. Thomas, Energy Environ. Sci. 8, 702–730 (2015)CrossRefGoogle Scholar
  41. 41.
    H.D. Tran, J.M.D. Arcy, Y. Wang, P.J. Beltramo, A. Strong, R.B. Kaner, J. Mater. Chem. 21, 3534–3550 (2011)CrossRefGoogle Scholar
  42. 42.
    G.S. Kumar, D. Vishnupriya, A. Joshi, S. Datar, T.U. Patro, Phys. Chem. Chem. Phys. 17, 20347–20360 (2015)CrossRefGoogle Scholar
  43. 43.
    Y. Wu, N. Yu, D. Liu, Y. He, Y. Liu, H. Liang, G. Du, Appl. Surf. Sci. 265, 176–179 (2013)CrossRefGoogle Scholar
  44. 44.
    I.A. Ramphal, M.E. Hagerman, Langmuir. 31, 1505–1515 (2015)CrossRefGoogle Scholar
  45. 45.
    R. Aepuru, S. Kankash, H.S. Panda, RSC Adv. 6, 32272–32285 (2016)CrossRefGoogle Scholar
  46. 46.
    G.S. Gund, D.P. Dubal, S.S. Shinde, C.D. Lokhande, ACS Appl. Mater. Interfaces 6, 3176–3188 (2014)CrossRefGoogle Scholar
  47. 47.
    P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, Energy Environ. Sci. 3, 1238–1251 (2010)CrossRefGoogle Scholar
  48. 48.
    H. Wang, H. Dai, Chem. Soc. Rev. 42, 3088–3113 (2012)CrossRefGoogle Scholar
  49. 49.
    J. Shen, C. Yang, X. Li, G. Wang, ACS Appl. Mater. Interfaces 5, 8467–8476 (2013)CrossRefGoogle Scholar
  50. 50.
    J. Yan, T. Wei, B. Shao, F. Ma, Z. Fan, M. Zhang, C. Zheng, Y. Shang, W. Qian, F. Wei, Carbon 48, 1731–1737 (2010)CrossRefGoogle Scholar
  51. 51.
    Y. Lei, J. Li, Y. Wang, L. Gu, Y. Chang, H. Yuan, D. Xiao, ACS Appl. Mater. Interfaces 6, 1773–1780 (2014)CrossRefGoogle Scholar
  52. 52.
    F. Deng, L. Yu, G. Cheng, T. Lin, M. Sun, F. Ye, Y. Li, J. Power Sources 251, 202–207 (2014)CrossRefGoogle Scholar
  53. 53.
    Q. Liao, N. Li, H. Cui, C. Wang, J. Mater. Chem. A 1, 13715 (2013)CrossRefGoogle Scholar
  54. 54.
    C. Tang, Z. Tang, H. Gong, J. Electrochem. Soc. 159, 651–656 (2012)CrossRefGoogle Scholar
  55. 55.
    Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, X. Chen, Adv. Mater. 25, 4035–4042 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials EngineeringDefence Institute of Advanced TechnologyPuneIndia
  2. 2.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations