Advertisement

Effects of V2O5 doping on the structure and electrical properties of BCZT lead-free piezoelectric ceramics

  • Yixuan Yang
  • Jingdong Guo
  • Weibing MaEmail author
  • Huaidang Zhao
  • Minjie Ma
  • Jinquan Wu
  • Mengshuang Chi
Article
  • 47 Downloads

Abstract

Lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3-x mol%V2O5 (x = 0, 0.05, 0.15, 0.20 and 0.50) were fabricated successfully via solid-state reaction route and the effects of V2O5 doping on the phase composition, microstructure and electrical properties of the ceramics have also been studied. The results indicated that the addition of V2O5 significantly lower the sintering temperature of BCZT ceramics to 1350 °C without sacrificing the high piezoelectrical properties. XRD results revealed that the phase structure was not changed with the introduction of V2O5. The sinterablity results and the SEM graphs indicated that small amount of V2O5 could effectively increase the density and grain size of BCZT ceramics. However, the electrical properties of BCZT ceramics deteriorate rapidly when the amount of V2O5 up to 0.5 mol%. Thus, the piezoelectrical properties of BCZT-xV ceramics could be obtained at x = 0.2 mol%, which were as following: d33 = 466 pC/N, kp = 32.5%, Qm = 162, Pr = 7.735 µC/cm2, εr = 3104 and tan δ = 0.03, implying promising applications for lead-free piezoelectric ceramics.

References

  1. 1.
    D.S. Keeble, F. Benabdallah, P.A. Thomas et al., Appl. Phys. Lett. 102, 092903 (2013)CrossRefGoogle Scholar
  2. 2.
    C. Eric, Natrue. 432, 24 (2004)CrossRefGoogle Scholar
  3. 3.
    M.P. Zheng, Y.D. Hou, M.K. Zhu et al., J. Eur. Ceram. Soc. 34, 2275 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Saito, H. Takao, T. Tani et al., Nature. 432, 84 (2004)CrossRefGoogle Scholar
  5. 5.
    W. Liu, X. Ren, Phys. Rev. Lett. 103, 25760 (2009)Google Scholar
  6. 6.
    S.K. Ye, J.Y.H. Fuh, L. Lu, Appl. Phys. Lett. 100, 252906 (2012)CrossRefGoogle Scholar
  7. 7.
    S.J. Zhang, R. Xia, T.R. Shrout, J. Electroceram. 19, 251 (2007)CrossRefGoogle Scholar
  8. 8.
    Q.B. Hu, H.W. Du, W. Feng et al., J. Alloys Compd. 640, 327 (2015)CrossRefGoogle Scholar
  9. 9.
    T. Chen, H.L. Wang, T. Zhang et al., Ceram. Int. 40, 2959 (2014)CrossRefGoogle Scholar
  10. 10.
    Y. Bai, A. Matousek, P. Tofel et al., J. Eur. Ceram. Soc. 35, 3445 (2015)CrossRefGoogle Scholar
  11. 11.
    K. Wang, F. Yao, W. Jo et al., Adv. Funct. Mater. 23, 4079 (2013)CrossRefGoogle Scholar
  12. 12.
    J. Wu, D. Xiao et al., J. Eur. Ceram. Soc. 32, 891 (2012)CrossRefGoogle Scholar
  13. 13.
    X. Huang, R. Xing, C. Gao et al., J. Rare Earth. 32, 733 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Ma, X. Liu, W. Li, J. Alloys Compd. 581, 642 (2013)CrossRefGoogle Scholar
  15. 15.
    C. Zhou, W. Liu, D. Xue et al., Appl. Phys. Lett. 100, 222910 (2012)CrossRefGoogle Scholar
  16. 16.
    D. Xue, Y. Zhou, H. Bao et al., Appl. Phys. Lett. 99, 122901 (2011)CrossRefGoogle Scholar
  17. 17.
    W.F. Bai, J.G. Hao, J.W. Zhai et al., Ceram. Int. 39, S19 (2013)CrossRefGoogle Scholar
  18. 18.
    M.C. Ehmke, S.N. Ehrlich, J.E. Blendell et al., J. Appl. Phys. 111, 124110 (2012)CrossRefGoogle Scholar
  19. 19.
    J. Gao, X. Hu, L. Zhang et al., Appl. Phys. Lett. 104, 252909 (2014)CrossRefGoogle Scholar
  20. 20.
    Y. Tian, X. Chao, L. Wei et al., J. Appl. Phys. 113, 184101 (2013)CrossRefGoogle Scholar
  21. 21.
    B. Haugen, J.S. Forrester, D. Damjanovic et al., J. Appl. Phys. 113, 014103 (2013)CrossRefGoogle Scholar
  22. 22.
    Z. Yang, Y. Chang, B. Liu et al., Mater. Sci. Eng. 432, 292 (2006)CrossRefGoogle Scholar
  23. 23.
    L. Wang, C. Mao, G. Wang et al., J. Am. Ceram. Soc. 96, 24 (2013)CrossRefGoogle Scholar
  24. 24.
    S.H. Shin, J.D. Han, J. Yoo, Mater. Lett. 154, 120 (2015)CrossRefGoogle Scholar
  25. 25.
    C.K.I. Tan, K. Yao, J. Ma, J. Appl. Ceram. Technol. 10, 701 (2013)CrossRefGoogle Scholar
  26. 26.
    X. Chen, X. Ruan, K. Zhao et al., J. Alloy. Compd. 632, 103 (2015)CrossRefGoogle Scholar
  27. 27.
    P. Parjansri, K. Pengpat, G. Rujijanagul et al., Ferroelectrics. 458, 91 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Reyes-Montero, L. Pardo, R. López-Juárez et al., J. Alloys Compd. 584, 28 (2014)CrossRefGoogle Scholar
  29. 29.
    U. Intatha, P. Parjansri, K. Pengpat et al., Integr. Ferroelectr. 139, 83 (2012)CrossRefGoogle Scholar
  30. 30.
    H.D. Zhao, W.B. Ma, J.D. Guo et al., J. Mater. Sci. 29, 2949 (2017)Google Scholar
  31. 31.
    Y.M. lai, Y.M. Zeng, X.L. Tang et al., Ceram. Int. 42, 12694 (2016)CrossRefGoogle Scholar
  32. 32.
    X.C. Liu, L.L. Zhao, F. Gao et al., J. Inorg. Mater. 21, 885 (2006)Google Scholar
  33. 33.
    D.H. Kang, K.C. Nam, H.J. Cha, J. Eur. Ceram. Soc. 26, 2117 (2006)CrossRefGoogle Scholar
  34. 34.
    K.H. Yoon, J.H. Chung, D.H. Kang, Ferroelectrics. 133, 277 (1992)CrossRefGoogle Scholar
  35. 35.
    W.C. Tzou, C.F. Yang, Y.C. Chen, J. Eur. Ceram. Soc. 20, 991 (2000)CrossRefGoogle Scholar
  36. 36.
    C.F. Yang. J. Mater. Sci. Lett. 18, 805 (1999)CrossRefGoogle Scholar
  37. 37.
    D.S. Yin, Z.H. Zhao, Y.J. Dai et al., J. Am. Ceram. Soc. 99, 2354 (2016)CrossRefGoogle Scholar
  38. 38.
    W. Li, Z. Xu, R. Chu et al., Physica B. 405, 4513 (2010)CrossRefGoogle Scholar
  39. 39.
    X.L. Chao, J.J. Wang, P.F. Liang et al., 89, 465 (2016)Google Scholar
  40. 40.
    T. Bongkarn, S. Chootin, S. Pinitsoontorn et al., J. Alloys Compd. 682, 14 (2016)CrossRefGoogle Scholar
  41. 41.
    Y. Zhang, H.J. Sun, W. Chen, J. Alloys Compd. 694, 745 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and EngineeringTianjin UniversityTianjinChina

Personalised recommendations