Structural and dielectric relaxor properties of (1−x)BaTiO3xBi(Zn1/2Zr1/2)O3 ceramics for energy storage applications

  • Feng Si
  • Bin TangEmail author
  • Zixuan Fang
  • Shuren Zhang


In this paper, the (1−x)BaTiO3xBi(Zn1/2Zr1/2)O3 (x = 0.04–0.20) solid solutions were prepared using conventional solid-state reaction method. The X-ray diffraction results showed that all samples were crystalized as the perovskite structure, and there was no secondary phase in whole compositional range. For x = 0.04, the ceramics were in tetragonal phase, and transformed to a pesudocubic phase for x ≥ 0.08 at ambient temperature. Temperature-dependent dielectric measurements indicated a crossover from ferroelectric behavior to relaxor-like characteristics. As the BZZ content increased, the polarization–electric field (P–E) hysteresis loops became slimmer, and the discharge energy density increased firstly, but dropped. For x = 0.12, the maximum discharge energy density was 0.758 J/cm3 at 100 kV/cm, and the corresponding energy efficiency was 98%, indicating that (1−x)BaTiO3xBi(Zn1/2Zr1/2)O3 ceramics were promising candidates for energy storage applications.



This work was supported by the National Natural Science Foundation of China (Grant No. 51672038).


  1. 1.
    M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, C.S. Hwang, Thin HfxZr1–xO2 films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 4, 14006101–14006107 (2014)Google Scholar
  2. 2.
    M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012)CrossRefGoogle Scholar
  3. 3.
    J.H. Pikul, H. Gang Zhang, J. Cho, P.V. Braun, W.P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732–1736 (2013)CrossRefGoogle Scholar
  4. 4.
    Z.S. Wu, K. Parvez, X. Feng, K. Mullen, Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4, 2487–2487 (2013)CrossRefGoogle Scholar
  5. 5.
    Q. Yuan, F. Yao, Y. Wang, R. Ma, H. Wang, Relaxor ferroelectric 0.9BaTiO3–0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C 5, 9552–9558 (2017)CrossRefGoogle Scholar
  6. 6.
    N.H. Fletcher, A.D. Hilton, B.W. Ricketts, Optimization of energy storage density in ceramic capacitors. J. Phys. D 29, 253–258 (1996)CrossRefGoogle Scholar
  7. 7.
    D.P. Shay, N.J. Podraza, N.J. Donnelly, C.A. Randall, D.W. Johnson, High energy density, high temperature capacitors utilizing Mn-Doped 0.8CaTiO3–0.2CaHfO3 ceramics. J. Am. Ceram. Soc. 95, 1348–1355 (2012)CrossRefGoogle Scholar
  8. 8.
    T.F. Zhang, X.G. Tang, X.X. Huang, Q.X. Liu, Y.P. Jiang, Q.F. Zhou, High-temperature dielectric relaxation behaviors of relaxer-like PbZrO3–SrTiO3 ceramics for energy-storage applications. Energy Technol.-Ger 4, 633–640 (2016)CrossRefGoogle Scholar
  9. 9.
    J.F. Wang, T.Q. Yang, S.C. Chen, G. Li, High energy storage density performance of Ba, Sr-modified lead lanthanum zirconate titanate stannate antiferroelectric ceramics. Mater. Res. Bull. 48, 3847–3849 (2013)CrossRefGoogle Scholar
  10. 10.
    L. Jin, F. Li, S.J. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)CrossRefGoogle Scholar
  11. 11.
    Q. Hu, L. Jin, P.S. Zelenovskiy, V.Y. Shur, Y. Zhuang, Z. Xu, X. Wei, Relaxation behavior and electrical inhomogeneity in 0.9BaTiO3–0.1Bi(Mg1/2Ti1/2)O3 ceramic. Ceram. Int. 43, 12828–12834 (2017)CrossRefGoogle Scholar
  12. 12.
    L. Wu, X. Wang, L. Li, Lead-free BaTiO3–Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage. RSC Adv. 6, 14273–14282 (2016)CrossRefGoogle Scholar
  13. 13.
    R. Muhammad, Y. Iqbal, I.M. Reaney, C. Randall, BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for high-temperature capacitor applications. J. Am. Ceram. Soc. 99, 2089–2095 (2016)CrossRefGoogle Scholar
  14. 14.
    H. Ogihara, C.A. Randall, S. Trolier-McKinstry, High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J. Am. Ceram. Soc. 92, 1719–1724 (2009)CrossRefGoogle Scholar
  15. 15.
    P.R. Ren, X. Wang, H.Q. Fan, Y. Ren, G.Y. Zhao, Structure, relaxation behaviors and nonlinear dielectric properties of BaTiO3–Bi(Ti0.5Mg0.5)O3 ceramics. Ceram. Int. 41, 7693–7697 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Manjon-Sanz, C. Berger, M.R. Dolgos, Understanding the structure-property relationships of the ferroelectric to relaxor transition of the (1−x)BaTiO3–(x)BiInO3 lead-free piezoelectric system. J. Mater. Sci. 52, 5309–5323 (2017)CrossRefGoogle Scholar
  17. 17.
    T. Wang, L. Jin, C. Li, Q. Hu, X. Wei, D. Lupascu, Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98, 559–566 (2015)CrossRefGoogle Scholar
  18. 18.
    X.B. Zhao, Z.Y. Zhou, R.H. Liang, F.H. Liu, X.L. Dong, High-energy storage performance in lead-free (1−x)BaTiO3–xBi(Zn0.5Ti0.5)O3 relaxor ceramics for temperature stability applications. Ceram. Int. 43, 9060–9066 (2017)CrossRefGoogle Scholar
  19. 19.
    B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)CrossRefGoogle Scholar
  20. 20.
    Q. Zhang, Z.R. Li, F. Li, Z. Xu, Structural and dielectric properties of Bi (Mg1/2Ti1/2)O3–BaTiO3 lead-free ceramics. J. Am. Ceram. Soc. 94, 4335–4339 (2011)CrossRefGoogle Scholar
  21. 21.
    X.C. Huang, H. Hao, S.J. Zhang, H.X. Liu, W.Q. Zhang, Q. Xu, M.H. Cao, Structure and dielectric properties of BaTiO3–BiYO3 perovskite solid solutions. J. Am. Ceram. Soc. 97, 1797–1801 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Ferrari, L. Lutterotti, Method for the simultaneous determination of anisotropic residual-stresses and texture by X-ray-diffraction. J. Appl. Phys. 76, 7246–7255 (1994)CrossRefGoogle Scholar
  23. 23.
    Z.B. Shen, X.H. Wang, B.C. Luo, L.T. Li, BaTiO3–BiYbO3 perovskite materials for energy storage applications. J. Mater. Chem. A 3, 18146–18153 (2015)CrossRefGoogle Scholar
  24. 24.
    N. Kumar, E.A. Patterson, T. Fromling, E.P. Gorzkowski, P. Eschbach, I. Love, M.P. Muller, R.A. De Souza, J. Tucker, S.R. Reese, D.P. Cann, Defect mechanisms in BaTiO3–BiMO3 ceramics. J. Am. Ceram. Soc. 101, 2376–2390 (2018)CrossRefGoogle Scholar
  25. 25.
    H.B. Yang, F. Yan, Y. Lin, T. Wang, Novel strontium titanate-based lead-free ceramics for high-energy storage applications. ACS Sustain. Chem. Eng. 5, 10215–10222 (2017)CrossRefGoogle Scholar
  26. 26.
    F. Rubio-Marcos, P. Marchet, X. Vendrell, J.J. Romero, F. Rémondière, L. Mestres, J.F. Fernández, Effect of MnO doping on the structure, microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. J. Alloys Compd. 509, 8804–8811 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Zhu, L. Liu, Y. Hou, H. Wang, H. Yan, Microstructure and electrical properties of MnO-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 lead-free piezoceramics. J. Am. Ceram. Soc. 90, 120–124 (2007)CrossRefGoogle Scholar
  28. 28.
    S. Shukla, S. Seal, R. Vij, S. Bandyopadhyay, Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia. Nano Lett. 3, 397–401 (2003)CrossRefGoogle Scholar
  29. 29.
    M.K. Zhu, L.Y. Liu, Y.D. Hou, H. Wang, H. Yan, Microstructure and electrical properties of MnO-doped (Na0.5Bi0.5)(0.92)Ba0.08TiO3 lead-free piezoceramics. J. Am. Ceram. Soc. 90, 120–124 (2007)CrossRefGoogle Scholar
  30. 30.
    G. Schileo, A. Feteira, K. Reichmann, M. Li, D.C. Sinclair, Structure–property relationships in (1−x)BaTiO3–xBiGdO3 ceramics. J. Eur. Ceram. Soc. 35, 2479–2488 (2015)CrossRefGoogle Scholar
  31. 31.
    Z. Xiong, B. Tang, C. Yang, S. Zhang, Correlation between structures and microwave dielectric properties of Ba3.75Nd9.5–xSmxTi17.5(Cr1/2Nb1/2)0.5O54 ceramics. J. Alloys Compd. 740, 492–499 (2018)CrossRefGoogle Scholar
  32. 32.
    Z. Xiong, B. Tang, Z. Fang, C. Yang, S. Zhang, Effects of (Cr0.5Ta0.5)4+ on structure and microwave dielectric properties of Ca0.61Nd0.26TiO3 ceramics. Ceram. Int. 44, 7771–7779 (2018)CrossRefGoogle Scholar
  33. 33.
    J. Pokorny, U.M. Pasha, L. Ben, O.P. Thakur, D.C. Sinclair, I.M. Reaney, Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3. J. Appl. Phys. 109, 1141101–1141105 (2011)CrossRefGoogle Scholar
  34. 34.
    U.D. Venkateswaran, V.M. Naik, R. Naik, High-pressure Raman studies of polycrystalline BaTiO3. Phys. Rev. B 58, 14256–14260 (1998)CrossRefGoogle Scholar
  35. 35.
    P.R. Ren, H.Q. Fan, X. Wang, G.Z. Dong, Phase transition, high figure of merit and polar nano-regions in dielectric tunable lanthanum substituted barium titanate. J. Alloys Compd. 617, 337–344 (2014)CrossRefGoogle Scholar
  36. 36.
    N. Baskaran, A. Ghule, C. Bhongale, R. Murugan, H. Chang, Phase transformation studies of ceramic BaTiO3 using thermo-Raman and dielectric constant measurements. J. Appl. Phys. 91, 10038–10043 (2002)CrossRefGoogle Scholar
  37. 37.
    N.K. Karan, R.S. Katiyar, T. Maiti, R. Guo, A.S. Bhalla, Raman spectral studies of Zr4+-rich BaZrxTi1–xO3(0.5⩽x⩽1.00) phase diagram. J. Raman Spectrosc. 40, 370–375 (2009)CrossRefGoogle Scholar
  38. 38.
    U.M. Pasha, H. Zheng, O.P. Thakur, A. Feteira, K.R. Whittle, D.C. Sinclair, I.M. Reaney, In situ Raman spectroscopy of A-site doped barium titanate. Appl. Phys. Lett. 91, 0629081–0629083 (2007)CrossRefGoogle Scholar
  39. 39.
    S.Y. Zheng, E. Odendo, L.J. Liu, D.P. Shi, Y.M. Huang, L.L. Fan, J. Chen, L. Fang, B. Elouadi, Electrostrictive and relaxor ferroelectric behavior in BiAlO3-modified BaTiO3 lead-free ceramics. J. Appl. Phys. 113, 0941021–0941025 (2013)Google Scholar
  40. 40.
    Z.H. Yao, H.X. Liu, Y. Liu, Z.H. Wu, Z.Y. Shen, Y. Liu, M.H. Cao, Structure and dielectric behavior of Nd-doped BaTiO3 perovskites. Mater. Chem. Phys. 109, 475–481 (2008)CrossRefGoogle Scholar
  41. 41.
    P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3–BaZrO3 system. J. Appl. Phys. 89, 8085–8091 (2001)CrossRefGoogle Scholar
  42. 42.
    P.S. Dobal, A. Dixit, R.S. Katiyar, Effect of lanthanum substitution on the Raman spectra of barium titanate thin films. J. Raman Spectrosc. 38, 142–146 (2007)CrossRefGoogle Scholar
  43. 43.
    H. Hayashi, T. Nakamura, T. Ebina, In-situ Raman spectroscopy of BaTiO3 particles for tetragonal-cubic transformation. J. Phys. Chem. Solids 74, 957–962 (2013)CrossRefGoogle Scholar
  44. 44.
    J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, A. Simon, High-pressure Raman investigation of the Pb-free relaxor BaTi0.65Zr0.35O3. Phys. Rev. B 69, 0921041–0921044 (2004)CrossRefGoogle Scholar
  45. 45.
    X. Chen, J. Chen, D. Ma, L. Fang, H. Zhou, High relative permittivity, low dielectric loss and good thermal stability of BaTiO3-Bi(Mg0.5Zr0.5)O3 solid solution. Ceram. Int. 41, 2081–2088 (2015)CrossRefGoogle Scholar
  46. 46.
    T. Strathdee, L. Luisman, A. Feteira, K. Reichmann, F. Morrison, Ferroelectric-to-Relaxor Crossover in (1-x)BaTiO3-xBiYbO3 (0 ≤ x ≤ 0.08) Ceramics. J. Am. Ceram. Soc. 94, 2292–2295 (2011)CrossRefGoogle Scholar
  47. 47.
    X. Chen, J. Chen, G. Huang, D. Ma, L. Fang, H. Zhou, Relaxor Behavior and Dielectric Properties of Bi(Zn2/3Nb1/3)O3-Modified BaTiO3 Ceramics. J. Electron. Mater. 44, 4804–4810 (2015)CrossRefGoogle Scholar
  48. 48.
    R. Farhi, M. El Marssi, A. Simon, J. Ravez, A Raman and dielectric study of ferroelectric ceramics. Eur. Phys. J. B 9, 599–604 (1999)CrossRefGoogle Scholar
  49. 49.
    L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987)CrossRefGoogle Scholar
  50. 50.
    N. Triamnak, R. Yimnirun, J. Pokorny, D.P. Cann, D.C. Lupascu, Relaxor Characteristics of the Phase Transformation in (1 – x)BaTiO3–xBi(Zn1/2Ti1/2)O3 Perovskite Ceramics. J. Am. Ceram. Soc. 96, 3176–3182 (2013)Google Scholar
  51. 51.
    G.A. Samara, The relaxational properties of compositionally disordered ABO3 perovskites. J. Phys.-Condens. Matter 15, R367–R411 (2003)CrossRefGoogle Scholar
  52. 52.
    N. Kumar, A. Ionin, T. Ansell, S. Kwon, W. Hackenberger, D. Cann, Multilayer ceramic capacitors based on relaxor BaTiO3–Bi(Zn1/2Ti1/2)O3 for temperature stable and high energy density capacitor applications. Appl. Phys. Lett. 106, 2529011–2529014 (2015)Google Scholar
  53. 53.
    H. Ogihara, C.A. Randall, S. Trolier-McKinstry, Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics. J. Am. Ceram. Soc. 92, 110–118 (2009)CrossRefGoogle Scholar
  54. 54.
    D.H. Choi, A. Baker, M. Lanagan, S. Trolier-McKinstry, C. Randall, D. Johnson, Structural and dielectric properties in (1−x)BaTiO3–xBi(Mg1/2Ti1/2)O3Ceramics (0.1 ≤ x ≤ 0.5) and potential for high-voltage multilayer capacitors. J. Am. Ceram. Soc. 96, 2197–2202 (2013)CrossRefGoogle Scholar
  55. 55.
    N. Raengthon, C. McCue, D.P. Cann, Relationship between tolerance factor and temperature coefficient of permittivity of temperature-stable high permittivity BaTiO3–Bi(Me)O3 compounds, J. Adv. Dielectr. 6, 1650002 (2016)CrossRefGoogle Scholar
  56. 56.
    I.A. Santos, J.A. Eiras, Phenomenological description of the diffuse phase transition in ferroelectrics. J Phys-Condens Mat 13, 11733–11740 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations