Advertisement

Facile preparation of various ZnO nanostructures via ultrasonic mist vapor deposition: a systematic investigation about the effects of growth parameters

  • Hassan Alehdaghi
  • Mohammad ZirakEmail author
Article
  • 30 Downloads

Abstract

ZnO thin films with various surface morphologies were deposited on glass substrate via a facile and well-controllable method so-called ultrasonic mist vapor deposition (UMVD). The effects of important growth parameters namely substrate temperature (Ts), nozzle-substrate distance (D) and nozzle aperture diameter (d) on optical, electrical and surface properties (both in micro and macro-scale) of synthesized thin films were carefully investigated. In case of d = 10 mm and D = 6 cm, ZnO nanoseeds and nanorods were grown at Ts = 330 and 500 °C, respectively. Interestingly, ZnO nanosheets were grown perpendicular to the substrate when d = 10 mm, D = 9 cm and Ts = 400 °C. More rough surfaces (in macroscopic scale) were grown for small D (6 and 9 cm) and lower substrate temperature (Ts = 330 and 400 °C) while for Ts = 500 °C a smooth and uniform surface can be obtained at any distance. The layer prepared with d = 10 mm, has the lowest roughness (33 nm) which is one order of magnitude lower than other samples. Increment of Ts, d and also D reduced the electrical sheet resistance. The growth mechanisms leading to obtain various morphologies for different samples were also proposed and discussed.

Notes

Acknowledgements

The Authors would like to thank Research and Technology Council of the Hakim Sabzevari University for financial support.

References

  1. 1.
    A. Ouhaibi, M. Ghamnia, M.A. Dahamni, V. Heresanu, C. Fauquet, D. Tonneau, J. Sci. Adv. Mater. Devices 3(1), 29 (2018)CrossRefGoogle Scholar
  2. 2.
    M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films 605, 2 (2016)CrossRefGoogle Scholar
  3. 3.
    S. Vanalakar, R. Pawar, M. Suryawanshi, S. Mali, D. Dalavi, A. Moholkar, K. Sim, Y. Kown, J. Kim, P. Patil, Mater. Lett. 65(3), 548 (2011)CrossRefGoogle Scholar
  4. 4.
    H. Alehdaghi, M. Marandi, M. Molaei, A. Irajizad, N. Taghavinia, J. Alloy. Compd. 586, 380 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Cui, Z. Zhang, Y. Wang, A. Finch, P. Townsend, Luminescence 33(4), 654 (2018)CrossRefGoogle Scholar
  6. 6.
    V. Errico, G. Arrabito, E. Fornetti, C. Fuoco, S. Testa, G. Saggio, S. Rufini, S. Cannata, A. Desideri, C. Falconi, ACS Appl. Mater. Interfaces 10(16), 14097 (2018)CrossRefGoogle Scholar
  7. 7.
    X. Li, S. Liu, K. Fan, Z. Liu, B. Song, J. Yu, Adv. Energy Mater. 8(18), 1800101 (2018)Google Scholar
  8. 8.
    H. Mou, C. Song, Y. Zhou, B. Zhang, D. Wang, Appl. Catal. B 221, 565 (2018)CrossRefGoogle Scholar
  9. 9.
    G. Li, Y. Su, Y.-Y. Li, Y.-X. Li, Z. Guo, X.-J. Huang, J.-H. Liu, Nanotechnology 29(44), 445501 (2018)CrossRefGoogle Scholar
  10. 10.
    H. Oh, J. Park, W. Choi, H. Kim, Y. Tchoe, A. Agrawal, G.C. Yi, Small 14(17), 1800240 (2018)CrossRefGoogle Scholar
  11. 11.
    L. Shi, D. Li, J. Yu, H.-M. Zhang, S. Ullah, B. Yang, C. Li, C. Zhu, J. Xu, J. Power Sources 387, 64 (2018)CrossRefGoogle Scholar
  12. 12.
    P. Mbule, D. Wang, R. Grieseler, P. Schaaf, B. Muhsin, H. Hoppe, B. Mothudi, M. Dhlamini, Sol. Energy 172, 219 (2018)Google Scholar
  13. 13.
    Z. Zang, Appl. Phys. Lett. 112(4), 042106 (2018)CrossRefGoogle Scholar
  14. 14.
    F. Jiang, J. Chen, H. Bi, L. Li, W. Jing, J. Zhang, J. Dai, R. Che, C. Chen, Y. Gao, Appl. Phys. Lett. 112(3), 033505 (2018)CrossRefGoogle Scholar
  15. 15.
    M.-C. Tseng, D.-S. Wuu, C.-L. Chen, H.-Y. Lee, R.-H. Horng, Appl. Surf. Sci. 432, 196 (2018)CrossRefGoogle Scholar
  16. 16.
    H. Alehdaghi, M. Marandi, A. Irajizad, N. Taghavinia, Org. Electron. 16, 87 (2015)CrossRefGoogle Scholar
  17. 17.
    H. Chun-Ying, H. Fu-Fan, W. Chia-Ling, C. Ming-Liang, T. Ping-Hung, T. Sian-Rong, Y. Ting-Wei, L. Ya-Ju, Appl. Phys. Express 11(7), 075103 (2018)CrossRefGoogle Scholar
  18. 18.
    S.A. Alavi-Tabari, M.A. Khalilzadeh, H. Karimi-Maleh, J. Electroanal. Chem. 811, 84 (2018)CrossRefGoogle Scholar
  19. 19.
    C.-Y. Tsay, K.-C. Pai, Thin Solid Films 654, 11 (2018)CrossRefGoogle Scholar
  20. 20.
    H. Kang, Z. Lu, Z. Zhong, J. Gu, Mater. Lett. 215, 102 (2018)CrossRefGoogle Scholar
  21. 21.
    V. Vaiano, M. Matarangolo, J. Murcia, H. Rojas, J. Navío, M. Hidalgo, Appl. Catal. B 225, 197 (2018)CrossRefGoogle Scholar
  22. 22.
    S. Bazazi, N. Arsalani, A. Khataee, A.G. Tabrizi, J. Ind. Eng. Chem. 62, 265 (2018)CrossRefGoogle Scholar
  23. 23.
    M. Zirak, O. Moradlou, M.R. Bayati, Y.T. Nien, A.Z. Moshfegh, Appl. Surf. Sci. 273, 391 (2013)CrossRefGoogle Scholar
  24. 24.
    O. Dimitrov, D. Nesheva, V. Blaskov, I. Stambolova, S. Vassilev, Z. Levi, V. Tonchev, Mater. Chem. Phys. 148(3), 712 (2014)CrossRefGoogle Scholar
  25. 25.
    J.A.G. de León, J.G.Q. Galvan, A.P. Centeno, G.G. Rosas, E. Camps, M.A. Santana-Aranda, Mater. Res. Express 5(6), 066417 (2018)Google Scholar
  26. 26.
    W. Shaojun, J. Lan, H. Weina, H. Jie, L. Xiaowei, W. Qingsong, L. Yongfeng, Appl. Phys. Express 11(5), 052703 (2018)CrossRefGoogle Scholar
  27. 27.
    O.W. Kennedy, M.L. Coke, E.R. White, M.S. Shaffer, P.A. Warburton, Mater. Lett. 212, 51 (2018)CrossRefGoogle Scholar
  28. 28.
    H. Makino, H. Shimizu, Appl. Surf. Sci. 439, 839–844 (2018)CrossRefGoogle Scholar
  29. 29.
    M.M. Reddy, G.R. Reddy, K. Chennakesavulu, E. Sundaravadivel, S. Prasath, A. Rabel, J. Sreeramulu, J. Porous Mater. 24(1), 149 (2017)CrossRefGoogle Scholar
  30. 30.
    M. Thomson, J. Hodgkinson, D. Sheel, Surf. Coat. Technol. 230, 190 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Zirak, O. Akhavan, O. Moradlou, Y.T. Nien, A.Z. Moshfegh, J. Alloy. Compd. 590, 507 (2014)CrossRefGoogle Scholar
  32. 32.
    X. San, M. Li, D. Liu, G. Wang, Y. Shen, D. Meng, F. Meng, J. Alloy. Compd. 739, 260 (2018)CrossRefGoogle Scholar
  33. 33.
    W. Shin, W. Cho, S.J. Baik, Mater. Res. Express 5, 1 (2018)CrossRefGoogle Scholar
  34. 34.
    M. Arif, A. Sanger, P.M. Vilarinho, A. Singh, J. Electron. Mater. 47(7), 3678–3684 (2018)Google Scholar
  35. 35.
    V. Mata, A. Maldonado, M. de la L. Olvera, Mater. Sci. Semicon. Process. 75, 288 (2018)CrossRefGoogle Scholar
  36. 36.
    A. Djelloul, Y. Larbah, M. Adnane, B. Labdelli, M. Ziane, A. Manseri, A. Messaoud, J. Nano-Electron. Phys. 10(2), 02036 (2018)Google Scholar
  37. 37.
    X. Zhao, J. Cheng, J. Mater. Sci. 27(3), 2676 (2016)Google Scholar
  38. 38.
    S. Jongthammanurak, M. Witana, T. Cheawkul, C. Thanachayanont, Mater. Sci. Semicon. Process. 16(3), 625 (2013)CrossRefGoogle Scholar
  39. 39.
    H.L. Ma, Z.W. Liu, D.C. Zeng, M.L. Zhong, H.Y. Yu, E. Mikmekova, Appl. Surf. Sci. 283, 1006 (2013)CrossRefGoogle Scholar
  40. 40.
    H.-J. Jeon, S.-G. Lee, K.-S. Shin, S.-W. Kim, J.-S. Park, J. Alloy. Compd. 614, 244 (2014)CrossRefGoogle Scholar
  41. 41.
    H. Tanoue, M. Takenouchi, T. Yamashita, S. Wada, Z. Yatabe, S. Nagaoka, Y. Naka, Y. Nakamura, Phys. Status Solidi A 214(3), 1600603 (2017)CrossRefGoogle Scholar
  42. 42.
    U. Kazuyuki, Y. Yuichiro, T. Ichiro, Appl. Phys. Express 10(1), 015502 (2017)CrossRefGoogle Scholar
  43. 43.
    F. Ynineb, N. Attaf, M.S. Aida, J. Bougdira, Y. Bouznit, H. Rinnert, Thin Solid Films 628, 36 (2017)CrossRefGoogle Scholar
  44. 44.
    X. Gao, X. Li, W. Yu, Thin Solid Films 484(1–2), 160 (2005)CrossRefGoogle Scholar
  45. 45.
    G. Kenanakis, N. Katsarakis, Mater. Res. Bull. 60, 752 (2014)CrossRefGoogle Scholar
  46. 46.
    J.C. Viguié, J. Spitz, J. Electrochem. Soc. 122(4), 3 (1975)CrossRefGoogle Scholar
  47. 47.
    Y. Lee, H. Kim, Y. Roh, Jpn. J. Appl. Phys. 40(4R), 2423 (2001)CrossRefGoogle Scholar
  48. 48.
    J. Cheng, R. Hu, Q. Wang, C.X. Zhang, Z. Xie, Z.W. Long, X. Yang, L. Li, Int. J. Photoenergy 2015, 8 (2015)Google Scholar
  49. 49.
    M. Zirak, O. Moradlou, M. Bayati, Y. Nien, A. Moshfegh, Appl. Surf. Sci. 273, 391 (2013)CrossRefGoogle Scholar
  50. 50.
    X.Y. Zhao, B.C. Zheng, C.Z. Li, J. Inorg. Mater. 11, 611 (1996)Google Scholar
  51. 51.
    S.-H. Hu, Y.-C. Chen, C.-C. Hwang, C.-H. Peng, D.-C. Gong, J. Alloy. Compd. 500(2), L17 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsHakim Sabzevari UniversitySabzevarIslamic Republic of Iran

Personalised recommendations