Advertisement

Dielectric, tunability, leakage current, and ferroelectric properties of (K0.45Na0.55)0.95Li0.05NbO3 lead free piezoelectric

  • Abd El-razek MahmoudEmail author
  • Ahmed S. Afify
  • S. K. S. Parashar
Article
  • 27 Downloads

Abstract

In the present work, a perovskite structure of (K0.45Na0.55)0.95Li0.05NbO3 lead free ceramic (KNNL) was prepared by solid solution technique then it was calcined at 900 °C for 2 h followed by sintering at 1100 °C for 2 h. A single phase of KNNL has been formed and quite regular stripe nano-scale domains with junctions correspond to grain boundaries has been observed by TEM at room temperature. Two phase transitions temperature were clearly observed: orthorhombic–tetragonal (TO–T = 130 °C) and tetragonal–cubic transition (TT–C = 380 °C). Un-switching leakage has been observed drastically suppressed in all range of the electric field, however anomalous peak around (~ 2 kV/cm) has been observed in switching leakage which could be attributed to the domain switching. Meanwhile, the mechanism of dielectric tunability was studied and the findings were interpreted by using Johnson’s phenomenological. Additionally, the ferroelectric properties have been investigated by hysteresis loop (P–E) and positive up negative down (PUND) methods. The result of the remnant polarization which appraised by PUND is (Qsw = 1.831 µC/cm2) which owing to the switching charged density. Piezoelectric properties based on d33 were investigated where its piezoelectric coefficient equal 240 pm/V.

Notes

Acknowledgements

Authors are gratefully acknowledge the CV-Raman International Fellowship for the African researchers awarded 2017 and Project No. NRB-277/MAT/12-13 for the financial support. Also, Authors would like to appreciate the Colleges of Nano sensor Lab., School of Applied Science KIIT University, India and Faculty of Science colleges, South Valley University, Egypt for their help. A special thanks to Ms. Xiao Andong, FIST, Xi’an Jiaotong University, Jiaotong, China for her help.

References

  1. 1.
    J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimurac, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015)CrossRefGoogle Scholar
  2. 2.
    J. Roedel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, J. Am. Ceram. Soc. 92, 1153 (2009)CrossRefGoogle Scholar
  3. 3.
    Y.F. Liu, Y.N. Lu, S.H. Dai, J. Alloys Compd. 484, 801 (2009)CrossRefGoogle Scholar
  4. 4.
    J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, F.-Z. Yao, J. Am. Ceram. Soc .96, 3677 (2013)CrossRefGoogle Scholar
  5. 5.
    B. Peng, H.F.Q. Lia, Q. Zhang, J. Alloys Compd. 549, 283 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Rajabtabar Darvishi, W.L. Li, O. Sheikhnejad-Bishe, L.D. Wang, Y. Zhao, S.Q. Zhang, W.D. Fei, J. Alloys Compd. 514, 179 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Rödel, W. Jo, K.P. Seifert, J. Am. Ceram. Soc. 92, 1153 (2009)CrossRefGoogle Scholar
  8. 8.
    E. Ringgaard, T. Wurlitzer, J. Eur. Ceram. Soc. 25, 2701 (2005)CrossRefGoogle Scholar
  9. 9.
    L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959)CrossRefGoogle Scholar
  10. 10.
    M. Eriksson, H.X. Yan, M. Nygren, M.J. Reece, Z.J. Shen, Mater. Res. 25, 240 (2010)CrossRefGoogle Scholar
  11. 11.
    C. Sun, X.R. Xing, J. Chen, J.X. Deng, L. Li, R.B. Yu, L.J. Qiao, G.R. Liu, Eur. Inorg. Chem. 13, 1884 (2007)CrossRefGoogle Scholar
  12. 12.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)CrossRefGoogle Scholar
  13. 13.
    Y. Xu, D.W. Liu, F.P. Lai, Y.H. Zhen, J.F. Li, J. Am. Ceram. Soc. 91, 2844 (2008)CrossRefGoogle Scholar
  14. 14.
    J.T. Zeng, K.W. Kwol, H.L.W. Chan, Mater. Lett. 61, 409 (2007)CrossRefGoogle Scholar
  15. 15.
    H. Gu, K. Zhu, X. Pang, B. Shao, J. Qiu, H. Ji, Ceram. Int. 38, 1807 (2012)CrossRefGoogle Scholar
  16. 16.
    X. Pang, J. Qiu, K. Zhu, Q. Meng, Jpn. J. Appl. Phys. 50, 110203 (2011)Google Scholar
  17. 17.
    K. Wang, J.F. Li, J. Am. Ceram. Soc. 93, 1101 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Zhou, L.-Q. Cheng, K. Wang, X.-W. Zhang, J.-F. Li, H. Liua, J.-Z. Fang, Ceram. Int. 40, 2927 (2014)CrossRefGoogle Scholar
  19. 19.
    H. Tao, J. Wu, T. Zheng, X. Wang, X. Lou, J. Appl. Phys. 118, 044102 (2015)CrossRefGoogle Scholar
  20. 20.
    R. Ranjith, B. Kundys, W. Prellier, Appl. Phys. Lett. 91(22), 222904 (2007)CrossRefGoogle Scholar
  21. 21.
    H. Guo, X. Tan, Phys. Rev. B 91, 144104 (2015)CrossRefGoogle Scholar
  22. 22.
    J. Chen, Z. Tang, R. Tian, Y. Bai, S. Zhao, H. Zhang, RSC Adv. 6, 33834 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Upadhyay, V. Reddy, S.M. Gupta, N. Chauhan, A. Gupta, AIP Adv. 5, 047135 (2015)CrossRefGoogle Scholar
  24. 24.
    A.E. Mahmoud, G. Viola, A.S. Afify, A.M. Babeer, M. Ferraris, J. Porous Mater. (2016).  https://doi.org/10.1007/s10934-016-0315-8 CrossRefGoogle Scholar
  25. 25.
    K.W. Wagner, Ann. Phys. 40, 817 (1913)CrossRefGoogle Scholar
  26. 26.
    J.H. Kima, J.S. Kimb, S.H. Hanc, H.-W. Kangc, H.-G. Leec, C.I. Cheona, Ceram. Int. 42, 5226 (2016)CrossRefGoogle Scholar
  27. 27.
    A.E. Mahmoud, A.S. Afify, A. Mohamed, J. Mater. Sci.: Mater. Electron. 28, 11591 (2017)Google Scholar
  28. 28.
    I. Khan, S. Khan, W. Khan, Mater. Sci. Semicond. Proc. 26, 516 (2014)CrossRefGoogle Scholar
  29. 29.
    K.M. Johnson, Appl. Phys. 33, 2826 (1962)CrossRefGoogle Scholar
  30. 30.
    H. Diamond, Appl. Phys. 32, 909 (1961)CrossRefGoogle Scholar
  31. 31.
    S.G. Lee, D.S. Kang, Mater. Lett. 57, 1629 (2003)CrossRefGoogle Scholar
  32. 32.
    A. Chen, Y. Zhi, Phys. Rev. B 69, 174109 (2004)CrossRefGoogle Scholar
  33. 33.
    P. Chen, P. Li, J. Zhai, B. Shen, F. Li, S. Wu, Ceram. Int. 43, 13371 (2017)CrossRefGoogle Scholar
  34. 34.
    Y. Li, Y. Guo, Q. Zheng, K.H. Lam, W. Zhou, Y. Wan, Mater. Res. Bull. 68, 92 (2015)CrossRefGoogle Scholar
  35. 35.
    N. Jiang, M. Tian, L. Luo, Q. Zheng, D. Shi, K.H. Lam, C. Xu, D. Lin, J. Electron. Mater. 45(1), 291 (2016)CrossRefGoogle Scholar
  36. 36.
    R. Shannon, Acta Crystallogr. A 32, 751 (1976)CrossRefGoogle Scholar
  37. 37.
    P. Li, W. Li, S. Liu, Y. Zhang, J. Zhai, H. Chen, Ceram. Int. 41, S344 (2015)CrossRefGoogle Scholar
  38. 38.
    H.-l. Liana, X.-j. Shaoa, X.-m. Chenb, Ceram. Int. 44, 11320 (2018)CrossRefGoogle Scholar
  39. 39.
    Z. Li, W. Peng, C. Zhou, Q. Li, L. Yang, J. Xu, G. Chen, C. Yuan, G. Rao, Ceram. Int. 44, 14439 (2018)CrossRefGoogle Scholar
  40. 40.
    J.F. Scott, C.A. Araujo, H.B. Meadows, L.D. McMillan, Appl. Phys. 66, 1444 (1989)CrossRefGoogle Scholar
  41. 41.
    T. Zheng, C. Zhao, J. Wu, K. Wang, J.-F. Li, Scr. Mater. 155, 11 (2018)CrossRefGoogle Scholar
  42. 42.
    S. Praharaj, D. Rout, S.-J.L. Kang, I.W. Kim, Mater. Lett. 184, 197 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceSouth Valley UniversityQenaEgypt
  2. 2.Nano Sensor Lab, School of Applied ScienceKalinga Institute of Industrial Technology (Deemed to be University)BhubaneswarIndia
  3. 3.Department of Applied Science and TechnologyPolitecnico di TorinoTorinoItaly

Personalised recommendations