Advertisement

Enhancement in electrochemical performance of nitrogen-doped hierarchical porous carbon-based supercapacitor by optimizing activation temperature

  • Lin Tang
  • Yibei Zhou
  • Xinyi Zhou
  • Yuru Chai
  • Qiaoji Zheng
  • Dunmin LinEmail author
Article
  • 80 Downloads

Abstract

The electrochemical performance of carbon-based supercapacitor is closely related with the microscopic characteristics of electrode materials. Here, nitrogen-doped hierarchical porous carbons (NHPC) was fabricated by KOH treatment and pyrolyzation using pig nail as a protein-rich biomass source, and microscopic characteristics of the materials were effectively tailored by optimizing activation temperature to enhance electrochemical performance of carbonaceous materials for supercapacitor. The results show that the optimum activation temperature is 800 °C. The constructed NHPC-800 displays three-dimensional interconnected honeycomb structure, possesses high specific surface area (2563.30 m2 g−1) with high-speed ion transfer channels. Additionally, NHPC-800 deliver superior capacitance with 251.4 F g−1 at 1 A g−1. Besides, a remarkable energy density of 29.43 Wh kg−1 corresponding to power density of 847.9 W kg−1 is verified by an assembled symmetric supercapacitor in EMIMBF4 electrolyte.

Notes

Acknowledgements

This work was supported by Sichuan Science and Technology Program (2018JY0447).

References

  1. 1.
    J. Chang, Z. Gao, X. Wang, D. Wu, F. Xu, X. Wang, Y. Guo, K. Jiang, Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochim. Acta 157, 290–298 (2015)Google Scholar
  2. 2.
    J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 1300816 (2014)Google Scholar
  3. 3.
    K. Srirangan, L. Akawi, M. Moo-Young, C.P. Chou, Towards sustainable production of clean energy carriers from biomass resources. Appl. Energy 100, 172–186 (2012)Google Scholar
  4. 4.
    J.R. Miller, P. Simon, Materials science. Electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008)Google Scholar
  5. 5.
    Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016)Google Scholar
  6. 6.
    L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)Google Scholar
  7. 7.
    J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 22(12), 2632–2641 (2012)Google Scholar
  8. 8.
    L.Y. Chen, Y. Hou, J.L. Kang, A. Hirata, T. Fujita, M.W. Chen, Toward the theoretical capacitance of RuO2 reinforced by highly conductive nanoporous gold. Adv. Energy Mater. 3(7), 851–856 (2013)Google Scholar
  9. 9.
    Z.F. Li, H. Zhang, Q. Liu, L. Sun, L. Stanciu, J. Xie, Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors. ACS Appl. Mater. Interfaces 5(7), 2685–2691 (2013)Google Scholar
  10. 10.
    L.-J. Xie, J.-F. Wu, C.-M. Chen, C.-M. Zhang, L. Wan, J.-L. Wang, Q.-Q. Kong, C.-X. Lv, K.-X. Li, G.-H. Sun, A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide–cobalt oxide nanocomposite anode. J. Power Sources 242, 148–156 (2013)Google Scholar
  11. 11.
    T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, Y. Li, Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett. 14(5), 2522–2527 (2014)Google Scholar
  12. 12.
    C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13(5), 2078–2085 (2013)Google Scholar
  13. 13.
    Q. Lu, Y. Zhou, Synthesis of mesoporous polythiophene/MnO2 nanocomposite and its enhanced pseudocapacitive properties. J. Power Sources 196(8), 4088–4094 (2011)Google Scholar
  14. 14.
    Z. Lei, Z. Liu, H. Wang, X. Sun, L. Lu, X.S. Zhao, A high-energy-density supercapacitor with graphene–CMK-5 as the electrode and ionic liquid as the electrolyte. J. Mater. Chem. A 1(6), 2313 (2013)Google Scholar
  15. 15.
    F. Miao, C. Shao, X. Li, K. Wang, N. Lu, Y. Liu, Electrospun carbon nanofibers/carbon nanotubes/polyaniline ternary composites with enhanced electrochemical performance for flexible solid-state supercapacitors. ACS Sustain. Chem. Eng. 4(3), 1689–1696 (2016)Google Scholar
  16. 16.
    X. He, H. Zhang, H. Zhang, X. Li, N. Xiao, J. Qiu, Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors. J. Mater. Chem. A 2(46), 19633–19640 (2014)Google Scholar
  17. 17.
    L. Hao, X. Li, L. Zhi, Carbonaceous electrode materials for supercapacitors. Adv. Mater. 25(28), 3899–3904 (2013)Google Scholar
  18. 18.
    D.S. Su, R. Schlogl, Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem 3(2), 136–168 (2010)Google Scholar
  19. 19.
    P. Trogadas, T.F. Fuller, P. Strasser, Carbon as catalyst and support for electrochemical energy conversion. Carbon 75, 5–42 (2014)Google Scholar
  20. 20.
    C.-Y. Li, J. Patra, C.-H. Yang, C.-M. Tseng, S.B. Majumder, Q.-F. Dong, J.-K. Chang, Electrolyte optimization for enhancing electrochemical performance of antimony sulfide/graphene anodes for sodium-ion batteries–carbonate-based and ionic liquid electrolytes. ACS Sustain. Chem. Eng. 5(9), 8269–8276 (2017)Google Scholar
  21. 21.
    Y. Zhou, J. Ren, L. Xia, H. Wu, F. Xie, Q. Zheng, C. Xu, D. Lin, Nitrogen-doped hierarchical porous carbon framework derived from waste pig nails for high-performance supercapacitors. ChemElectroChem 4(12), 3181–3187 (2017)Google Scholar
  22. 22.
    M. Biswal, A. Banerjee, M. Deo, S. Ogale, From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 6(4), 1249 (2013)Google Scholar
  23. 23.
    H.-J. Liu, J. Wang, C.-X. Wang, Y.-Y. Xia, Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor. Adv. Energy Mater. 1(6), 1101–1108 (2011)Google Scholar
  24. 24.
    H. Zhou, S. Zhu, M. Hibino, I. Honma, Electrochemical capacitance of self-ordered mesoporous carbon. J. Power Sources 122(2), 219–223 (2003)Google Scholar
  25. 25.
    Y. Li, Z. Li, P.K. Shen, Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv. Mater. 25(17), 2474–2480 (2013)Google Scholar
  26. 26.
    S.L. Candelaria, B.B. Garcia, D. Liu, G. Cao, Nitrogen modification of highly porous carbon for improved supercapacitor performance. J. Mater. Chem. 22(19), 9884 (2012)Google Scholar
  27. 27.
    Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23(42), 4828–4850 (2011)Google Scholar
  28. 28.
    M. Zhou, F. Pu, Z. Wang, S. Guan, Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68, 185–194 (2014)Google Scholar
  29. 29.
    B. Qiu, C. Pan, W. Qian, Y. Peng, L. Qiu, F. Yan, Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors. J. Mater. Chem. A 1(21), 6373 (2013)Google Scholar
  30. 30.
    Z. Li, Z. Xu, H. Wang, J. Ding, B. Zahiri, C.M.B. Holt, X. Tan, D. Mitlin, Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ. Sci. 7(5), 1708–1718 (2014)Google Scholar
  31. 31.
    L.-F. Chen, Z.-H. Huang, H.-W. Liang, W.-T. Yao, Z.-Y. Yu, S.-H. Yu, Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 6(11), 3331 (2013)Google Scholar
  32. 32.
    F. Gao, G. Shao, J. Qu, S. Lv, Y. Li, M. Wu, Tailoring of porous and nitrogen-rich carbons derived from hydrochar for high-performance supercapacitor electrodes. Electrochim. Acta 155, 201–208 (2015)Google Scholar
  33. 33.
    Y.-H. Lin, T.-Y. Wei, H.-C. Chien, S.-Y. Lu, Manganese oxide/carbon aerogel composite: an outstanding supercapacitor electrode material. Adv. Energy Mater. 1(5), 901–907 (2011)Google Scholar
  34. 34.
    Z.J. Qiao, M.M. Chen, C.Y. Wang, Y.C. Yuan, Humic acids-based hierarchical porous carbons as high-rate performance electrodes for symmetric supercapacitors. Bioresour. Technol. 163, 386–389 (2014)Google Scholar
  35. 35.
    W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 7(1), 379–386 (2014)Google Scholar
  36. 36.
    Y. Wang, R. Yang, Y. Wei, Z. Zhao, M. Li, Preparation of novel pigskin-derived carbon sheets and their low-temperature activation-induced high capacitive performance. RSC Adv. 4(85), 45318–45324 (2014)Google Scholar
  37. 37.
    X. Wu, L. Jiang, C. Long, Z. Fan, From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors. Nano Energy 13, 527–536 (2015)Google Scholar
  38. 38.
    L. Sun, C. Tian, M. Li, X. Meng, L. Wang, R. Wang, J. Yin, H. Fu, From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A 1(21), 6462 (2013)Google Scholar
  39. 39.
    N. Guo, M. Li, X. Sun, F. Wang, R. Yang, Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities. Green Chem. 19(11), 2595–2602 (2017)Google Scholar
  40. 40.
    J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, D. Mitlin, Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy Environ. Sci. 8(3), 941–955 (2015)Google Scholar
  41. 41.
    D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19(3), 438–447 (2009)Google Scholar
  42. 42.
    H. Wu, Y. Deng, J. Mou, Q. Zheng, F. Xie, E. Long, C. Xu, D. Lin, Activator-induced tuning of micromorphology and electrochemical properties in biomass carbonaceous materials derived from mushroom for lithium-sulfur batteries. Electrochim. Acta 242, 146–158 (2017)Google Scholar
  43. 43.
    A.M. Abioye, F.N. Ani, Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew. Sustain. Energy Rev. 52, 1282–1293 (2015)Google Scholar
  44. 44.
    Q. Wang, Q. Cao, X. Wang, B. Jing, H. Kuang, L. Zhou, A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors. J. Power Sources 225, 101–107 (2013)Google Scholar
  45. 45.
    M. Armandi, B. Bonelli, F. Geobaldo, E. Garrone, Nanoporous carbon materials obtained by sucrose carbonization in the presence of KOH. Microporous Mesoporous Mater. 132(3), 414–420 (2010)Google Scholar
  46. 46.
    M.M. Wan, X.D. Sun, Y.Y. Li, J. Zhou, Y. Wang, J.H. Zhu, Facilely fabricating multifunctional N-enriched carbon. ACS Appl. Mater. Interfaces 8(2), 1252–1263 (2016)Google Scholar
  47. 47.
    J. Guo, H. Guo, L. Zhang, B. Yang, J. Cui, Hierarchically porous carbon as a high-rate and long-life electrode material for high-performance supercapacitors. ChemElectroChem 5(5), 770–777 (2018)Google Scholar
  48. 48.
    X.Y. Chen, C. Chen, Z.J. Zhang, D.H. Xie, X. Deng, J.W. Liu, Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J. Power Sources 230, 50–58 (2013)Google Scholar
  49. 49.
    X. Liu, D. Chao, Y. Li, J. Hao, X. Liu, J. Zhao, J. Lin, H. Jin Fan, Z. Xiang Shen, A low-cost and one-step synthesis of N-doped monolithic quasi-graphene films with porous carbon frameworks for Li-ion batteries. Nano Energy 17, 43–51 (2015)Google Scholar
  50. 50.
    B. Duan, X. Gao, X. Yao, Y. Fang, L. Huang, J. Zhou, L. Zhang, Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27, 482–491 (2016)Google Scholar
  51. 51.
    D. Usachov, O. Vilkov, A. Gruneis, D. Haberer, A. Fedorov, V.K. Adamchuk, A.B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, D.V. Vyalikh, Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett. 11(12), 5401–5407 (2011)Google Scholar
  52. 52.
    J. Li, S. Wang, Y. Ren, Z. Ren, Y. Qiu, J. Yu, Nitrogen-doped activated carbon with micrometer-scale channels derived from luffa sponge fibers as electrocatalysts for oxygen reduction reaction with high stability in acidic media. Electrochim. Acta 149, 56–64 (2014)Google Scholar
  53. 53.
    B. Xu, S. Hou, G. Cao, F. Wu, Y. Yang, Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. J. Mater. Chem. 22(36), 19088 (2012)Google Scholar
  54. 54.
    Y. Li, G. Wang, T. Wei, Z. Fan, P. Yan, Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016)Google Scholar
  55. 55.
    Z. Li, L. Zhang, B.S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B.C. Olsen, C.M.B. Holt, D. Mitlin, Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2(4), 431–437 (2012)Google Scholar
  56. 56.
    C. Zhang, X. Zhu, M. Cao, M. Li, N. Li, L. Lai, J. Zhu, D. Wei, Hierarchical porous carbon materials derived from sheep manure for high-capacity supercapacitors. ChemSusChem 9(9), 932–937 (2016)Google Scholar
  57. 57.
    A. Alabadi, X. Yang, Z. Dong, Z. Li, B. Tan, Nitrogen-doped activated carbons derived from a co-polymer for high supercapacitor performance. J. Mater. Chem. A 2(30), 11697–11705 (2014)Google Scholar
  58. 58.
    J. Qu, C. Geng, S. Lv, G. Shao, S. Ma, M. Wu, Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors. Electrochim. Acta 176, 982–988 (2015)Google Scholar
  59. 59.
    L. Sun, C. Tian, Y. Fu, Y. Yang, J. Yin, L. Wang, H. Fu, Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors. Chemistry 20(2), 564–574 (2014)Google Scholar
  60. 60.
    J. Han, G. Xu, B. Ding, J. Pan, H. Dou, D.R. MacFarlane, Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J. Mater. Chem. A 2(15), 5352–5357 (2014)Google Scholar
  61. 61.
    W. Zhang, H. Lin, Z. Lin, J. Yin, H. Lu, D. Liu, M. Zhao, 3 D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method. ChemSusChem 8(12), 2114–2122 (2015)Google Scholar
  62. 62.
    M. Wu, P. Li, Y. Li, J. Liu, Y. Wang, Enteromorpha based porous carbons activated by zinc chloride for supercapacitors with high capacity retention. RSC Adv. 5(21), 16575–16581 (2015)Google Scholar
  63. 63.
    H. Zhu, X. Wang, F. Yang, X. Yang, Promising carbons for supercapacitors derived from fungi. Adv. Mater. 23(24), 2745–2748 (2011)Google Scholar
  64. 64.
    H. Peng, G. Ma, K. Sun, Z. Zhang, Q. Yang, Z. Lei, Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors. Electrochim. Acta 190, 862–871 (2016)Google Scholar
  65. 65.
    Z. Zapata-Benabithe, F. Carrasco-Marin, J. de Vicente, C. Moreno-Castilla, Carbon xerogel microspheres and monoliths from resorcinol-formaldehyde mixtures with varying dilution ratios: preparation, surface characteristics, and electrochemical double-layer capacitances. Langmuir. 29(20), 6166–6173 (2013)Google Scholar
  66. 66.
    E. Raymundo-Piñero, F. Leroux, F. Béguin, A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv. Mater. 18(14), 1877–1882 (2006)Google Scholar
  67. 67.
    Y. Tao, X. Xie, W. Lv, D.M. Tang, D. Kong, Z. Huang, H. Nishihara, T. Ishii, B. Li, D. Golberg, F. Kang, T. Kyotani, Q.H. Yang, Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 3, 2975 (2013)Google Scholar
  68. 68.
    M. Seredych, T.J. Bandosz, S-doped micro/mesoporous carbon–graphene composites as efficient supercapacitors in alkaline media. J. Mater. Chem. A 1(38), 11717 (2013)Google Scholar
  69. 69.
    J.W. Lee, J.M. Ko, J.-D. Kim, Hydrothermal preparation of nitrogen-doped graphene sheets via hexamethylenetetramine for application as supercapacitor electrodes. Electrochim. Acta 85, 459–466 (2012)Google Scholar
  70. 70.
    P. Chen, J.-J. Yang, S.-S. Li, Z. Wang, T.-Y. Xiao, Y.-H. Qian, S.-H. Yu, Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2(2), 249–256 (2013)Google Scholar
  71. 71.
    Y.-H. Lee, K.-H. Chang, C.-C. Hu, Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. J. Power Sources 227, 300–308 (2013)Google Scholar
  72. 72.
    C. Shen, Y. Sun, W. Yao, Y. Lu, Facile synthesis of polypyrrole nanospheres and their carbonized products for potential application in high-performance supercapacitors. Polymer 55(12), 2817–2824 (2014)Google Scholar
  73. 73.
    L. Hao, B. Luo, X. Li, M. Jin, Y. Fang, Z. Tang, Y. Jia, M. Liang, A. Thomas, J. Yang, L. Zhi, Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors. Energy Environ. Sci. 5(12), 9747 (2012)Google Scholar
  74. 74.
    S. Wang, C. Han, J. Wang, J. Deng, M. Zhu, J. Yao, H. Li, Y. Wang, Controlled synthesis of ordered mesoporous carbohydrate-derived carbons with flower-like structure and N-doping by self-transformation. Chem. Mater. 26(23), 6872–6877 (2014)Google Scholar
  75. 75.
    Q. Wang, W. Xia, W. Guo, L. An, D. Xia, R. Zou, Functional zeolitic-imidazolate-framework-templated porous carbon materials for CO2 capture and enhanced capacitors. Chem. Asian J. 8(8), 1879–1885 (2013)Google Scholar
  76. 76.
    L. Qie, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang, Y. Huang, Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 6(8), 2497 (2013)Google Scholar
  77. 77.
    S. Chandra Sekhar, G. Nagaraju, J.S. Yu, High-performance pouch-type hybrid supercapacitor based on hierarchical NiO–Co3O4–NiO composite nanoarchitectures as an advanced electrode material. Nano Energy 48, 81–92 (2018)Google Scholar
  78. 78.
    H. Wu, Y. Li, J. Ren, D. Rao, Q. Zheng, L. Zhou, D. Lin, CNT-assembled dodecahedra core@nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries. Nano Energy 55, 82–92 (2019)Google Scholar
  79. 79.
    R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14(3), 271–279 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lin Tang
    • 1
  • Yibei Zhou
    • 1
  • Xinyi Zhou
    • 1
  • Yuru Chai
    • 1
  • Qiaoji Zheng
    • 1
  • Dunmin Lin
    • 1
    Email author
  1. 1.College of Chemistry and Materials ScienceSichuan Normal UniversityChengduChina

Personalised recommendations