Defect-relevant piezoelectric and ferroelectric properties in LiCuTa3O9-doped K0.5Na0.5NbO3 lead-free piezoceramics

  • Dongmei Wang
  • You Liao
  • Zhengxin Peng
  • Qiaoji Zheng
  • Xianhua Wei
  • Tao Wang
  • Dunmin LinEmail author


Lead-free K0.5Na0.5NbO3 + x mol LiCuTa3O9 (abbreviated to KNN-xLCT) piezoceramics are synthesized via a conventional sintering technique. All ceramics exhibit perovskite structure and their densification is improved after the addition of LCT. The doping of small quantities of LCT (x ≤ 0.015) results in the generation of two sorts of defect complexes [i.e., \({\left({\text{Cu}}_{\text{Nb}}^{{\prime }{\prime }{\prime }}-{\text{V}}_{\text{o}}^{\bullet \bullet }\right)}^{{\prime }}\) and \({\left({\text{V}}_{\text{o}}^{\bullet \bullet} - {\text{Cu}}_{\text{Nb}}^{\prime \prime \prime}-{\text{V}}_{\text{o}}^{\bullet \bullet}\right)}^{\bullet}\)], inducing greatly hardening electrical behaviors with high mechanical quality factor Qm of ~ 780 at x = 0.015. However, excess LCT (x ≥ 0.015) contributes to the substantial reduction of defect complexes, and thus the ceramics are softened, presenting a relatively low Qm of ~ 480 at x = 0.03. It is noted that the ceramics with x = 0.03 remain comparatively great piezoelectric performances: d33 = 96 pC/N and kp = 37%. Our study indicates that the electrical properties of KNN-based ceramics doped with LCT are closely related with microscopic defect structure in the materials.



Authors gratefully acknowledge the supports from the projects of National Natural Science Foundation of China (Grant Number 51572178) and Sichuan Science and Technology Program (2016JY0225). D. Wang and Y. Liao gratefully acknowledge the supports from National College Students’ innovation and entrepreneurship training program (201810636045). Authors gratefully thank Prof. Guifen Fan from Huazhong University of Science and Technology for measuring the dc conductivity.


  1. 1.
    T. Wang, L. He, Y. Deng, Q. Zheng, Q. Li, N. Jiang, C. Xu, X. Cao, D. Lin, Origin of superior hardening properties in KCuTa3O9-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Ceram. Int. 43, 15666–15677 (2017)CrossRefGoogle Scholar
  2. 2.
    P. Jaiban, A. Watcharapasorn, R. Yimnirun, R. Guo, A.S. Bhalla, Effects of donor and acceptor doping on dielectric and ferroelectric properties of Ba0.7Ca0.3TiO3 lead-free ceramics. J. Alloy. Compd. 695, 1329–1335 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Liao, D. Wang, H. Wang, T. Wang, X. Wei, Q. Zheng, W. Jie, D. Lin, Defect-induced transformation between hardening and softening behaviors in CuF2-doped K0.5Na0.5NbO3 piezoceramics. Ceram. Int. 45, 2644–2652 (2019)CrossRefGoogle Scholar
  4. 4.
    V. Singh, H.H. Kumar, D.K. Kharat, S. Hait, M.P. Kulkarni, Effect of Lanthanum substitution on ferroelectric properties of Niobium doped PZT ceramics. Mater. Lett. 60, 2964–2968 (2006)CrossRefGoogle Scholar
  5. 5.
    S.-Y. Chu, T.-Y. Chen, I.T. Tsai, Effects of sintering temperature on the dielectric and piezoelectric properties of Nb-Doped PZT ceramics and their applications. Integr. Ferroelectr. 58, 1293–1303 (2010)CrossRefGoogle Scholar
  6. 6.
    S.-Y. Chu, T.-Y. Chen, I.T. Tsai, W. Water, Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device. Sens. Actuators A 113, 198–203 (2004)CrossRefGoogle Scholar
  7. 7.
    B. Li, G. Li, Q. Yin, Z. Zhu, A. Ding, W. Cao, Pinning and depinning mechanism of defect dipoles in PMnN-PZT ceramics. J. Phys. D 38, 1107–1111 (2005)CrossRefGoogle Scholar
  8. 8.
    R. Rai, S. Sharma, R.N.P. Choudhary, Dielectric and piezoelectric studies of Fe doped PLZT ceramics. Mater. Lett. 59, 3921–3925 (2005)CrossRefGoogle Scholar
  9. 9.
    A. Kumar, S.K. Mishra, Structural and dielectric properties of Nb And Fe Co-doped PZT ceramic prepared by a semi-wet route. Adv. Mater. Lett. 5, 479–484 (2014)CrossRefGoogle Scholar
  10. 10.
    R.-A. Eichel, Structural and dynamic properties of oxygen vacancies in perovskite oxides-analysis of defect chemistry by modern multi-frequency and pulsed EPR techniques. Phys. Chem. Chem. Phys. 13, 368–384 (2011)CrossRefGoogle Scholar
  11. 11.
    Z. Zhao, Y. Dai, X. Li, Z. Zhao, X. Zhang, The evolution mechanism of defect dipoles and high strain in MnO2-doped KNN lead-free ceramics. Appl. Phys. Lett. 108, 172906 (2016)CrossRefGoogle Scholar
  12. 12.
    X. Tan, H. Fan, S. Ke, L. Zhou, Y.-W. Mai, H. Huang, Structural dependence of piezoelectric, dielectric and ferroelectric properties of K0.5Na0.5(Nb1−2x/5Cux)O3 lead-free ceramics with high Q m. Mater. Res. Bull. 47, 4472–4477 (2012)CrossRefGoogle Scholar
  13. 13.
    T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 113–126 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Zhang, R. Xia, T.R. Shrout, Lead-free piezoelectric ceramics vs. PZT? J. Electroceram. 19, 251–257 (2007)CrossRefGoogle Scholar
  15. 15.
    E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Piezoelectric properties of Li-and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl. Phys. Lett. 87, 182905 (2005)CrossRefGoogle Scholar
  16. 16.
    T. Yan, F. Han, S. Ren, J. Deng, X. Ma, L. Ren, L. Fang, L. Liu, B. Peng, B. Elouadi, Enhanced temperature-stable dielectric properties in oxygen annealed 0.85(K0.5Na0.5)NbO3-0.15SrZrO3 ceramic. Mater. Res. Bull. 99, 403–408 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)CrossRefGoogle Scholar
  18. 18.
    M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid. Jpn. J. Appl. Phys. 43, 7159 (2004)CrossRefGoogle Scholar
  19. 19.
    X. Peng, B. Zhang, L. Zhu, L. Zhao, R. Ma, B. Liu, X. Wang, Multi-phase structure and electrical properties of Bi0.5Li0.5ZrO3 doping K0.48Na0.56NbO3 lead-free piezoelectric ceramics. J. Adv. Ceram. 7, 79–87 (2018)CrossRefGoogle Scholar
  20. 20.
    D. Lin, K.W. Kwok, H.L.W. Chan, Piezoelectric properties and hardening behavior of K5.4Cu1.3Ta10O29-doped K0.5Na0.5NbO3 ceramics. J. Appl. Phys. 103, 438 (2008)Google Scholar
  21. 21.
    Y. Zhen, J.-F. Li, Normal sintering of (K,Na)NbO3-based ceramics: influence of sintering temperature on densification, microstructure, and electrical properties. J. Am. Ceram. Soc. 89, 3669–3675 (2006)CrossRefGoogle Scholar
  22. 22.
    Y.G. Lv, C.L. Wang, J.L. Zhang, M.L. Zhao, M.K. Li, H.C. Wang, Modified (K0.5Na0.5)(Nb0.9Ta0.1)O3 ceramics with high Q m. Mater. Lett. 62, 3425–3427 (2008)CrossRefGoogle Scholar
  23. 23.
    H.-S. Han, J. Koruza, E.A. Patterson, J. Schultheiß, E. Erdem, W. Jo, J.-S. Lee, J. Rödel, Hardening behavior and highly enhanced mechanical quality factor in (K0.5Na0.5)NbO3-based ceramics. J. Eur. Ceram. Soc. 37, 2083–2089 (2017)CrossRefGoogle Scholar
  24. 24.
    F. Rubio-Marcos, J.J. Reinosa, X. Vendrell, J.J. Romero, L. Mestres, P. Leret, J.F. Fernández, P. Marchet, Structure, microstructure and electrical properties of Cu2+ doped (K,Na,Li)(Nb,Ta,Sb)O3 piezoelectric ceramics. Ceram. Int. 39, 4139–4149 (2013)CrossRefGoogle Scholar
  25. 25.
    T. Wang, Y. Liao, D. Wang, Q. Zheng, J. Liao, F. Xie, W. Jie, D. Lin, Cycling- and heating-induced evolution of piezoelectric and ferroelectric properties of CuO-doped K0.5Na0.5NbO3 ceramic. J. Am. Ceram. Soc. 102, 351–361 (2019)CrossRefGoogle Scholar
  26. 26.
    Z.Y. Shen, Y. Xu, J.F. Li, Enhancement of Qm in CuO-doped compositionally optimized Li/Ta-modified (Na,K)NbO3 lead-free piezoceramics. Ceram. Int. 38, S331–S334 (2012)CrossRefGoogle Scholar
  27. 27.
    M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Synthesis and characterization of (K0.5Na0.5)(Nb0.7Ta0.3)O3 piezoelectric ceramics sintered with sintering Aid K5.4Cu1.3Ta10O29. Jpn. J. Appl. Phys. 44, 6618–6623 (2005)CrossRefGoogle Scholar
  28. 28.
    Y. Guo, T. Wang, L. He, Q. Zheng, J. Liao, C. Xu, D. Lin, Enhanced ferroelectric and ferromagnetic properties of Er-modified BiFeO3-BaTiO3 lead-free multiferroic ceramics. J. Mater. Sci. 27, 5741–5747 (2016)Google Scholar
  29. 29.
    T. Li, H. Fan, C. Long, G. Dong, S. Sun, Defect dipoles and electrical properties of magnesium B-site substituted sodium potassium niobates. J. Alloy. Compd. 609, 60–67 (2014)CrossRefGoogle Scholar
  30. 30.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)CrossRefGoogle Scholar
  31. 31.
    Q. Hu, H. Du, W. Feng, C. Chen, Y. Huang, Studying the roles of Cu and Sb in K0.48Na0.52NbO3 lead-free piezoelectric ceramics. J. Alloy. Compd. 640, 327–334 (2015)CrossRefGoogle Scholar
  32. 32.
    Y. Oh, J. Yoo, Microstructural, piezoelectric properties and temperature stability in Li0.02(Na0.55K0.45)0.98[(Nb0.77Ta0.18Sb0.05)1−2x/5Cux]O3 ceramics for piezoelectric actuator. Mater. Lett. 79, 180–183 (2012)CrossRefGoogle Scholar
  33. 33.
    H.-Y. Park, J.-Y. Choi, M.-K. Choi, K.-H. Cho, S. Nahm, H.-G. Lee, H.-W. Kang, Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 91, 2374–2377 (2008)CrossRefGoogle Scholar
  34. 34.
    K. Chen, F. Zhang, D. Li, J. Tang, Y. Jiao, L. An, Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceram. Int. 42, 2899–2903 (2016)CrossRefGoogle Scholar
  35. 35.
    T. Wang, D. Wang, Y. Liao, Q. Zheng, H. Sun, K.W. Kwok, N. Jiang, W. Jie, C. Xu, D. Lin, Defect structure, ferroelectricity and piezoelectricity in Fe/Mn/Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 38, 4915–4921 (2018)CrossRefGoogle Scholar
  36. 36.
    H.-Q. Wang, Y.-J. Dai, X.-W. Zhang, D. Damjanovic, Microstructure and hardening mechanism of K0.5Na0.5NbO3 lead-free ceramics with CuO doping sintered in different atmospheres. J. Am. Ceram. Soc. 95, 1182–1184 (2012)CrossRefGoogle Scholar
  37. 37.
    Y. Guo, P. Xiao, R. Wen, Y. Wan, Q. Zheng, D. Shi, K.H. Lam, M. Liu, D. Lin, Critical roles of Mn-ions in enhancing insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics. J. Mater. Chem. C 3, 5811–5824 (2015)CrossRefGoogle Scholar
  38. 38.
    M. Jiang, Q. Lin, D. Lin, Q. Zheng, X. Fan, X. Wu, H. Sun, Y. Wan, L. Wu, Effects of MnO2 and sintering temperature on microstructure, ferroelectric, and piezoelectric properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics. J. Mater. Sci. 48, 1035–1041 (2013)CrossRefGoogle Scholar
  39. 39.
    S.L. Yang, C.C. Tsai, Y.C. Liou, C.S. Hong, S.Y. Chu, Effects of non-stoichiometry on the microstructure, oxygen vacancies, and piezoelectric properties of CuTa2O6-doped NKN ceramics. J. Am. Ceram. Soc. 96, 2906–2912 (2013)CrossRefGoogle Scholar
  40. 40.
    D. Lin, K.W. Kwok, H.L.W. Chan, Phase transitionand electrical properties of (K0.5Na0.5)(Nb1−xTax)O3 lead-free piezoelectric ceramics. Appl. Phys. A 91, 167–171 (2008)CrossRefGoogle Scholar
  41. 41.
    R.A. Eichel, E. Erunal, P. Jakes, S. Korbel, C. Elsasser, H. Kungl, J. Acker, M.J. Hoffmann, Interactions of defect complexes and domain walls in CuO-doped ferroelectric (K,Na)NbO3. Appl. Phys. Lett. 102, 3454–3460 (2013)CrossRefGoogle Scholar
  42. 42.
    S. Steinsvik, R. Bugge, J. Gjønnes, J. Taft, T. Oslash, Norby, The defect structure of SrT1−xFexO3–y (x = 0-0.8) investigated by electrical conductivity measurements and electron energy loss spectroscopy (EELS). J. Phys. Chem. Solids 58, 969–976 (1997)CrossRefGoogle Scholar
  43. 43.
    P. Mahesh, S. Thota, D. Pamu, Dielectric response and ac-conductivity studies of Gd2O3-contained K0.5Na0.5NbO3 piezoelectric ceramics. IEEE Trans. Dielectr. Electr. Insul. 22, 3668–3675 (2016)CrossRefGoogle Scholar
  44. 44.
    T. Wang, L. He, Y. Deng, Q. Zheng, F. Xie, C. Xu, D. Lin, Defect-driven evolution of piezoelectric and ferroelectric properties in CuSb2O6-doped K0.5Na0.5NbO3 lead-free ceramics. J. Am. Ceram. Soc. 100, 5610–5619 (2017)CrossRefGoogle Scholar
  45. 45.
    M. Eriksson, H. Yan, G. Viola, H. Ning, D. Gruner, M. Nygren, M.J. Reece, Z. Shen, Ferroelectric domain structures and electrical properties of fine-grained lead-free sodium potassium niobate ceramics. J. Am. Ceram. Soc. 94, 3391–3396 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dongmei Wang
    • 1
  • You Liao
    • 1
  • Zhengxin Peng
    • 1
  • Qiaoji Zheng
    • 1
  • Xianhua Wei
    • 2
  • Tao Wang
    • 1
  • Dunmin Lin
    • 1
    Email author
  1. 1.College of Chemistry and Materials ScienceSichuan Normal UniversityChengduChina
  2. 2.State Key Laboratory for Environment-Friendly Energy MaterialsSouthwest University of Science and TechnologyMianyangChina

Personalised recommendations