Advertisement

Microstructure, ferroelectric and optical properties of lead free (1 − x)BiFeO3–xBi(Zn0.5Ti0.5)O3 thin films

  • Yanchun Xie
  • Yueli Zhang
Article
  • 12 Downloads

Abstract

(1 − x)BiFeO3xBi(Zn0.5Ti0.5)O3 ((1 − x)BFO–xBZT, x = 0, 0.2, 0.3, 0.4, 0.5, 0.6) thin films were deposited successfully on Pt(111)/Ti/SiO2/Si(100) and quartz substrates by sol–gel technique. Effects on the structural, electrical and optical properties have been investigated. According to the X-ray diffraction patterns, it could be revealed that a phase transition occurred from rhombohedral structure to pseudocubic structure. Highly (024) and (211)-oriented (1 − x)BFO–xBZT thin films were formed on Pt(111)/Ti/SiO2/Si(100) substrates. The atomic force microscope showed that all the samples had uniform morphology and the grain size became smaller obviously with the Bi(Zn0.5Ti0.5)O3 content increased. The electrical and ferroelectric tests showed that 0.6BFO–0.4BZT thin film had the lowest leakage current densities (2.02 × 10−8 A/cm2 at 300 kV/cm) and the best ferroelectric hysteresis loops with remanent polarization intensity 2Pr = 19.96 µC/cm2 at 400 kV/cm. The absorption edges of (1 − x)BFO–xBZT thin films were blue-shift and the band gaps became larger with the increasing of x value.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 61172027, Guangdong Natural Science Foundation under Grant No. 2014A030311049 and the Science and Technology Planning Project of Guangdong Province (2017A010103035).

References

  1. 1.
    M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764–2766 (2000)CrossRefGoogle Scholar
  2. 2.
    C. Tabares-Mun̄oz, J.P. Rivera, A. Bezinges, A. Monnier, H. Schmid, Jpn. J. Appl. Phys. 24, 1051 (2014)CrossRefGoogle Scholar
  3. 3.
    P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C 13, 1931 (2000)CrossRefGoogle Scholar
  4. 4.
    Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731–1733 (2004)CrossRefGoogle Scholar
  5. 5.
    K. Takahashi, N. Kida, M. Tonouchi, Phys. Rev. Lett. 96, 117402 (2006)CrossRefGoogle Scholar
  6. 6.
    F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, J.M. Liu, Z.F. Ren, Appl. Phys. Lett. 89, 102506 (2006)CrossRefGoogle Scholar
  7. 7.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719–1722 (2003)CrossRefGoogle Scholar
  8. 8.
    C. Wang, M. Takahashi, H. Fujino, X. Zhao, E. Kume, T. Horiuchi, S. Sakai, J. Appl. Phys. 99, 054104 (2006)CrossRefGoogle Scholar
  9. 9.
    H. Amorín, C. Correas, C.M. Fernández-Posada, O. Peña, A. Castro, M. Algueró, J. Appl. Phys. 115, 104104 (2014)CrossRefGoogle Scholar
  10. 10.
    Z. Pan, J. Chen, R. Yu, H. Yamamoto, Y. Rong, L. Hu, Q. Li, K. Lin, L. You, K. Zhao, L. Fan, Y. Ren, K. Kato, M. Azuma, X. Xing, Inorg. Chem. 55, 9513–9516 (2016)CrossRefGoogle Scholar
  11. 11.
    T. Qi, I. Grinberg, A.M. Rappe, Phys. Rev. B 79, 094114 (2009)CrossRefGoogle Scholar
  12. 12.
    S.C. Abrahams, S.K. Kurtz, P.B. Jamieson, Phys. Rev. 172, 551–553 (1968)CrossRefGoogle Scholar
  13. 13.
    Y. Ehara, S. Utsugi, M. Nakajima, T. Yamada, T. Iijima, H. Taniguchi, M. Itoh, H. Funakubo, Appl. Phys. Lett. 99, 141914 (2011)CrossRefGoogle Scholar
  14. 14.
    S.-T. Zhang, F. Yan, B. Yang, J. Appl. Phys. 107, 114110 (2010)CrossRefGoogle Scholar
  15. 15.
    Q. Zheng, Y. Guo, F. Lei, X. Wu, D. Lin, J. Mater. Sci.: Mater. Electron. 25, 2638–2648 (2014)Google Scholar
  16. 16.
    H. Funakubo, S. Yasui, K. Yazawa, J. Nagata, T. Oikawa, T. Yamada, H. Uchida, Proceedings of ISAF-ECAPD-PFM 2012, IEEE (2012)Google Scholar
  17. 17.
    Y. Wei, X. Wang, J. Jia, X. Wang, Ceram. Int. 38, 3499–3502 (2012)CrossRefGoogle Scholar
  18. 18.
    P. Li, W. Li, J. Zhai, B. Shen, H. Zeng, K. Zhao, RSC Adv. 5, 62713–62718 (2015)CrossRefGoogle Scholar
  19. 19.
    D.D. Khalyavin, A.N. Salak, N.P. Vyshatko, A.B. Lopes, N.M. Olekhnovich, A.V. Pushkarev, I.I. Maroz, Y.V. Radyush, Chem. Mater. 18, 5104 (2006)CrossRefGoogle Scholar
  20. 20.
    A. Kumar, N.M. Murari, R.S. Katiyar, J. Raman Spectrosc. 39, 1262–1267 (2010)CrossRefGoogle Scholar
  21. 21.
    K. Miura, M. Azuma, H. Funakubo, Materials 4, 260–273 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Hu, C. Luo, H. Tian, H. Gu, J. Alloys Compd. 509, 2993–2999 (2011)CrossRefGoogle Scholar
  23. 23.
    F. Fan, B. Luo, Duan, Mengmeng, Chen, J. Appl. Spectrosc. 80, 378–383 (2013)CrossRefGoogle Scholar
  24. 24.
    X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005)CrossRefGoogle Scholar
  25. 25.
    M.R. Suchomel, P.K. Davies, Appl. Phys. Lett. 86, 262905 (2005)CrossRefGoogle Scholar
  26. 26.
    I. Grinberg, M.R. Suchomel, W. Dmowski, S.E. Mason, H. Wu, P.K. Davies, A.M. Rappe, Phys. Rev. Lett. 98, 107601 (2007)CrossRefGoogle Scholar
  27. 27.
    Y.A. Huang, B. Lu, Y.X. Zou, D.D. Li, Y.B. Yao, T. Tao, B. Liang, S.G. Lu, J. Inorg. Mater. 33, 767–772 (2018)CrossRefGoogle Scholar
  28. 28.
    H.M. Xu, H.C. Wang, Y. Shen, Y.H. Lin, J. Appl. Phys. 116, 142908 (2014)Google Scholar
  29. 29.
    S. Prasertpalichat, D.P. Cann, J. Electroceram. 33, 214–220 (2014)CrossRefGoogle Scholar
  30. 30.
    S.K. Kulkarni, Nanotechnology: Principles and Practices (Springer, Berlin, 2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and EngineeringSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations