Advertisement

Enhanced dielectric properties and energy density of flexible KTa0.2Nb0.8O3-BaTiO3/P(VDF-TrFE-CTFE) nanocomposite

  • Zhao Zhang
  • Hui Yang
  • Hao Wang
  • Xingeng Ding
  • Qilong Zhang
  • Zhicai Zhu
Article
  • 27 Downloads

Abstract

In this work, KTa0.2Nb0.8O3–BaTiO3 (KTN–BT) hybrid nanoparticles were synthesized via a facile one-pot hydrothermal method. Flexible nanocomposite films comprised of poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) P(VDF-TrFE-CTFE) matrix and KTN–BT hybrid fillers of different molar ratio were prepared by solution-casting. It is revealed that the introduction of BT to the KTN causes decreased grain size and homogenous morphology, improving the dielectric constant, breakdown strengthen and energy density of nanocomposite films. Typically, the nanocomposite film containing 40 vol% KTN–BT possesses a dielectric constant of 322 at 100 Hz, which is 8.7 times than that of pure polymer. Also, nanocomposite film with < 10 vol% of filler could achieve high breakdown strength of over 300 MV m−1. The energy density of the film containing 2 vol% KTN–BT filler is 61.4% higher than that of pure P(VDF-TrFE-CTFE) polymer. (7.1 J cm−3 compared to 4.4 J cm−3.) In addition, the nanocomposites also displayed good flexibility and kept excellent dielectric properties after bending and folding. All the improved performance enables these composites to meet the requirements of many flexible electronic devices and energy storage devices.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Key R&D Program of China (Grant No. 2016YFB0401501), National Natural Science Foundation of China (Grant No. 51772267), and the Key R&D Program of Zhejiang Province (Grant No. 2018C01042).

References

  1. 1.
    Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Adv. Mater. 25, 6334–6365 (2013)CrossRefGoogle Scholar
  2. 2.
    S. Chu, A. Majumdar, Nature 488, 294–303 (2012)CrossRefGoogle Scholar
  3. 3.
    Q. Wang, L. Zhu, J. Polym. Sci. B 49, 1421–1429 (2011)CrossRefGoogle Scholar
  4. 4.
    Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog. Mater. Sci. 57, 660–723 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Ye, Q. Sun, X. Chen, Z. Jiang, F. Wang, R. Whatmore, J. Am. Ceram. Soc. 94, 3234–3236 (2011)CrossRefGoogle Scholar
  6. 6.
    Q. Zhang, L. Wang, J. Luo, Q. Tang, J. Du, Int. J. Appl. Ceram. Technol. 7, E124–E128 (2009)CrossRefGoogle Scholar
  7. 7.
    H. Tang, H.A. Sodano, Nano Lett. 13, 1373–1379 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Rahimabady, S. Chen, K. Yao, F. Eng Hock Tay, L. Lu, Appl. Phys. Lett. 99, 142901 (2011)CrossRefGoogle Scholar
  9. 9.
    Z.M. Dang, H.Y. Wang, H.P. Xu, Appl. Phys. Lett. 89, 112902 (2006)CrossRefGoogle Scholar
  10. 10.
    H. Tang, Y. Lin, C. Andrews, H.A. Sodano, Nanotechnology 22, 015702 (2011)CrossRefGoogle Scholar
  11. 11.
    C. Yang, H.S. Song, D.B. Liu, Composites B 50, 180–186 (2013)CrossRefGoogle Scholar
  12. 12.
    X. Zhang, J.Y. Jiang, Z.H. Shen, Z.K. Dan, M. Li, Y.H. Lin, C.W. Nan, L.Q. Chen, Y. Shen, Adv. Mater. 30, 10 (2018)Google Scholar
  13. 13.
    Y. Shen, D.S. Shen, X. Zhang, J.Y. Jiang, Z.K. Dan, Y. Song, Y.H. Lin, M. Li, C.W. Nan, J. Mater. Chem. A 4, 8359–8365 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Liu, J. Zhai, J. Mater. Chem. A 3, 1511–1517 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Hu, H. Gu, Z. Hu, W. Di, Y. Yuan, J. You, W. Cao, Y. Wang, H.L.W. Chan, Cryst. Growth Des. 8, 832–837 (2008)CrossRefGoogle Scholar
  16. 16.
    H. Tian, C. Hu, Q. Chen, Z. Zhou, Mater. Lett. 68, 14–16 (2012)CrossRefGoogle Scholar
  17. 17.
    G. Chen, X. Wang, J. Lin, W. Yang, H. Li, Y. Wen, J. Phys. Chem. C 120, 28423–28431 (2016)CrossRefGoogle Scholar
  18. 18.
    G. Chen, X. Wang, J. Lin, W. Yang, D. Li, W. Ding, H. Li, J. Phys. Chem. C 121, 15028–15035 (2017)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, J. Cui, Q. Yuan, Y. Niu, Y. Bai, H. Wang, Adv. Mater. 27, 6658–6663 (2015)CrossRefGoogle Scholar
  20. 20.
    Z.B. Pan, L.M. Yao, J.W. Zhai, S.H. Liu, K. Yang, H.T. Wang, J.H. Liu, Ceram. Int. 42, 14667–14674 (2016)CrossRefGoogle Scholar
  21. 21.
    X.Y. Huang, P.K. Jiang, Adv. Mater. 27, 546–554 (2015)CrossRefGoogle Scholar
  22. 22.
    Y.X. Wang, X.Y. Huang, T. Li, Z.W. Wang, L.Q. Li, X.J. Guo, P.K. Jiang, J. Mater. Chem. A 5, 20737–20746 (2017)CrossRefGoogle Scholar
  23. 23.
    W. Yang, Z. Zhou, B. Yang, Y. Jiang, Y. Pei, H. Sun, Y. Wang, Appl. Surf. Sci. 258, 3986–3990 (2012)CrossRefGoogle Scholar
  24. 24.
    Q. Chi, J. Sun, C. Zhang, G. Liu, J. Lin, Y. Wang, X. Wang, Q. Lei, J. Mater. Chem. C 2, 172–177 (2014)CrossRefGoogle Scholar
  25. 25.
    Y. Lu, J. Claude, L. Enrique Norena-Franco, Q. Wang, J. Phys. Chem. B 112, 10411–10416 (2008)CrossRefGoogle Scholar
  26. 26.
    J. Li, S.I. Seok, B. Chu, F. Dogan, Q. Zhang, Q. Wang, Adv. Mater. 21, 217–221 (2009)CrossRefGoogle Scholar
  27. 27.
    L.L. Sun, B. Li, Z.G. Zhang, W.H. Zhong, Eur. Polym. J. 46, 2112–2119 (2010)CrossRefGoogle Scholar
  28. 28.
    H. Luo, C. Chen, K. Zhou, X. Zhou, Z. Wu, D. Zhang, RSC Adv. 5, 68515–68522 (2015)CrossRefGoogle Scholar
  29. 29.
    N. Xu, L. Hu, Q. Zhang, X. Xiao, H. Yang, E. Yu, ACS Appl. Mater. Interfaces 7, 27373–27381 (2015)CrossRefGoogle Scholar
  30. 30.
    L. Yang, J. Qiu, H. Ji, K. Zhu, J. Wang, Composites A 65, 125–134 (2014)CrossRefGoogle Scholar
  31. 31.
    J.J. Li, J. Claude, L.E. Norena-Franco, S.I. Seok, Q. Wang, Chem. Mater. 20, 6304–6306 (2008)CrossRefGoogle Scholar
  32. 32.
    D. Yu, N. Xu, L. Hu, Q. Zhang, H. Yang, J. Mater. Chem. C 3, 4016–4022 (2015)CrossRefGoogle Scholar
  33. 33.
    M. Zhu, X. Huang, K. Yang, X. Zhai, J. Zhang, J. He, P. Jiang, ACS Appl. Mater. Interfaces 6, 19644–19654 (2014)CrossRefGoogle Scholar
  34. 34.
    G.-S. Wang, Y.-Y. Wu, X.-J. Zhang, Y. Li, L. Guo, M.-S. Cao, J. Mater. Chem. A 2, 8644–8651 (2014)CrossRefGoogle Scholar
  35. 35.
    S. Liu, S. Xue, W. Zhang, J. Zhai, G. Chen, J. Mater. Chem. A 2, 18040–18046 (2014)CrossRefGoogle Scholar
  36. 36.
    N. Jayasundere, B.V. Smith, J. Appl. Phys. 73, 2462–2466 (1993)CrossRefGoogle Scholar
  37. 37.
    L.J. Romasanta, P. Leret, L. Casaban, M. Hernández, M.A. de la Rubia, J.F. Fernández, J.M. Kenny, M.A. Lopez-Manchado, R. Verdejo, J. Mater. Chem. 22, 24705 (2012)CrossRefGoogle Scholar
  38. 38.
    W. Yang, S. Yu, R. Sun, R. Du, Acta Mater. 59, 5593–5602 (2011)CrossRefGoogle Scholar
  39. 39.
    C.W. Nan, Y. Shen, J. Ma, Annu. Rev. Mater. Res. 40, 131–151 (2010)CrossRefGoogle Scholar
  40. 40.
    Z.H. Shen, J.J. Wang, Y.H. Lin, C.W. Nan, L.Q. Chen, Y. Shen, Adv. Mater. 30, 6 (2018)Google Scholar
  41. 41.
    Z.B. Pan, L.M. Yao, G.L. Ge, B. Shen, J.W. Zhai, J. Mater. Chem. A 6, 14614–14622 (2018)CrossRefGoogle Scholar
  42. 42.
    X.Y. Huang, L.Y. Xie, Z.W. Hu, P.K. Jiang, IEEE Trans. Dielectr. Electr. Insul. 18, 375–383 (2011)CrossRefGoogle Scholar
  43. 43.
    B. Fan, F. Bedoui, S. Weigand, J. Bai, J. Phys. Chem. C 120, 9511–9519 (2016)CrossRefGoogle Scholar
  44. 44.
    G. Chen, W. Yang, J. Lin, X. Wang, D. Li, Y. Wang, M. Liang, W. Ding, H. Li, Q. Lei, J. Mater. Chem. C 5, 8135–8143 (2017)CrossRefGoogle Scholar
  45. 45.
    G.H. Chen, J. Zheng, C.L. Yuan, C.R. Zhou, X.L. Kang, J.W. Xu, Y. Yang, Mater. Lett. 176, 46–48 (2016)CrossRefGoogle Scholar
  46. 46.
    K. Yu, H. Wang, Y. Zhou, Y. Bai, Y. Niu, J. Appl. Phys. 113, 034105 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhao Zhang
    • 1
  • Hui Yang
    • 1
  • Hao Wang
    • 1
  • Xingeng Ding
    • 1
  • Qilong Zhang
    • 1
  • Zhicai Zhu
    • 1
  1. 1.School of Materials Science and Engineering, State Key Lab Silicon MatZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations