Enhanced energy-storage performance and temperature-stable dielectric properties of (1 − x)(0.94Na0.5Bi0.5TiO3–0.06BaTiO3)–xNa0.73Bi0.09NbO3 ceramics

  • Jinbo Wang
  • Huiqing FanEmail author
  • Bin Hu
  • Hua Jiang


A series of novel (1 − x)(0.94Na0.5Bi0.5TiO3–0.06BaTiO3)–xNa0.73Bi0.09NbO3 (BNT–BT–100xNBN) (x = 0–0.15) lead-free ceramics were fabricated by conventional solid state reaction method. The effects of NBN modification on the phase evolution, dielectric behavior, ferroelectric property and energy-storage performance were comprehensively investigated. All samples showed the pseudocubic structure and excessive dopants resulted in the secondary phase. The introduction of NBN resulted in deteriorative relaxor properties and maked two distinct dielectric anomalies smeared mutually. Therefore, the sample with x = 0.10 displayed a high permittivity (~ 1988) and low dielectric loss (< 0.02) in a broad temperature range of 25–337 °C. In addition, when x = 0.1, the optimal energy-storage density Wrec reached up to 1.56 J/cm3 with energy efficiency η = 92.5% at 120 kV/cm. The excellent thermal stability and fatigue resistance of sintered ceramics make it possible to be applied for practical dielectric capacitors.



This work is supported by the National Nature Science Foundation (51672220), the 111 Program (B08040) of MOE, the National Defense Science Foundation (32102060303), the National Key Research and Development Program of China (No. 2018YFB1106600) the Xi’an Science and Technology Foundation (CXY1706-5, 2017086CG-RC049-XBGY005), the Shaanxi Provincial Science Foundation (2017KW-018), and the NPU Gaofeng Project (17GH020824) of China. We would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for the help.


  1. 1.
    R.F. Cheng, Y.F. Duan, R.Q. Chu, J.G. Hao, J. Du, Z.J. Xu, G.R. Li, J. Mater. Sci. Mater. Electron. 26, 5409 (2015)CrossRefGoogle Scholar
  2. 2.
    J. Roedel, W. Jo, K.T.P. Seifert, E. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)CrossRefGoogle Scholar
  3. 3.
    L. Zhao, Q. Liu, J. Gao, S.J. Zhang, J.F. Li, Adv. Mater. 29, 1701824 (2017)CrossRefGoogle Scholar
  4. 4.
    A. Kumar, V.V.B. Prasad, K.C.J. Raju, A.R. James, J. Mater. Sci. Mater. Electron. 26, 3757 (2015)CrossRefGoogle Scholar
  5. 5.
    H.F. Li, J. Robertson, Appl. Phys. Lett. 110, 032903 (2017)CrossRefGoogle Scholar
  6. 6.
    Y.X. Zhang, C.L. Zhao, J. Yin, J.G. Wu, J. Mater. Sci. Mater. Electron. 28, 16948 (2017)CrossRefGoogle Scholar
  7. 7.
    Q.N. Li, C.R. Zhou, J.W. Xu, L. Yang, X. Zhang, W.D. Zeng, C.L. Yuan, G.H. Chen, G.H. Rao, J. Mater. Sci. Mater. Electron. 27, 10810 (2016)CrossRefGoogle Scholar
  8. 8.
    X.S. Qiao, X.M. Chen, H.L. Lian, J.P. Zhou, P. Liu, J. Eur. Ceram. Soc. 36, 3995 (2016)CrossRefGoogle Scholar
  9. 9.
    H. Nagata, T. Takenaka, J. Eur. Ceram. Soc. 21, 1299 (2001)CrossRefGoogle Scholar
  10. 10.
    Q. Li, J. Wang, Y. Ma, L.T. Ma, G.Z. Dong, H.Q. Fan, J. Alloy. Compd. 663, 701 (2016)CrossRefGoogle Scholar
  11. 11.
    Q. Li, J. Wang, Z.Y. Liu, G.Z. Dong, H.Q. Fan, J. Mater. Sci. 51, 1153 (2016)CrossRefGoogle Scholar
  12. 12.
    J.Y. Yoo, D.G. Oh, Y.H. Jeong, J. Hong, M. Jung, Mater. Lett. 58, 3831 (2004)CrossRefGoogle Scholar
  13. 13.
    N.S. Zhao, H.Q. Fan, L. Ning, J.W. Ma, Y. Zhou, J. Am. Ceram. Soc. 101, 5578 (2018)CrossRefGoogle Scholar
  14. 14.
    J.X. Ding, Y.F. Liu, Y.N. Lu, H. Qian, H. Gao, H. Chen, C.J. Ma, Mater. Lett. 114, 107 (2014)CrossRefGoogle Scholar
  15. 15.
    B. Hu, H.Q. Fan, L. Ning, S. Gao, Z.J. Yao, Q. Li, Ceram. Int. 44, 10968 (2018)CrossRefGoogle Scholar
  16. 16.
    Q. Xu, M.T. Lanagan, X. Huang, J. Xie, L. Zhang, H. Hao, H. Liu, Ceram. Int. 42, 9728 (2016)CrossRefGoogle Scholar
  17. 17.
    R. Dittmer, W. Jo, D. Damjanovic, J. Rodel, J. Appl. Phys. 109, 346 (2011)CrossRefGoogle Scholar
  18. 18.
    A. Zeb, S.J. Milne, J. Eur. Ceram. Soc. 34, 1727 (2014)CrossRefGoogle Scholar
  19. 19.
    X.L. Chen, Y.L. Wang, J. Chen, H.F. Zhou, L. Fang, L.J. Liu, J. Am. Ceram. Soc. 96, 3489 (2013)CrossRefGoogle Scholar
  20. 20.
    H.Q. Fan, L.J. Liu, J. Electroceram. 22, 291 (2009)CrossRefGoogle Scholar
  21. 21.
    A. Zeb, S.J. Milne, J. Am. Ceram. Soc. 96, 2887 (2013)CrossRefGoogle Scholar
  22. 22.
    A. Zeb, S.U. Jan, F. Bamiduro, D.A. Hall, S.J. Milne, J. Eur. Ceram. Soc. 38, 1548 (2018)CrossRefGoogle Scholar
  23. 23.
    J. Roedel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015)CrossRefGoogle Scholar
  24. 24.
    H.Y. Tian, D.Y. Wang, D.M. Lin, J.T. Zeng, K.W. Kwok, H.L.W. Chan, Solid State Commun. 142, 10 (2007)CrossRefGoogle Scholar
  25. 25.
    W. Meng, R. Zuo, S. Su, X. Wang, L. Li, J. Mater. Sci. Mater. Electron. 22, 1841 (2011)CrossRefGoogle Scholar
  26. 26.
    Y.F. Wang, Z.L. Lv, H. Xie, J. Cao, Ceram. Int. 40, 4323 (2014)CrossRefGoogle Scholar
  27. 27.
    Ang, Z. Yu, Appl. Phys. Lett. 95, 232908 (2009)CrossRefGoogle Scholar
  28. 28.
    K. Uchino, S. Nomura, Ferroelectrics 44, 55 (1982)CrossRefGoogle Scholar
  29. 29.
    I. Burn, D.M. Smyth, J. Mater. Sci. 7, 339 (1972)CrossRefGoogle Scholar
  30. 30.
    X. Hao, J. Adv. Dielectr. 3, 1330001 (2013)CrossRefGoogle Scholar
  31. 31.
    T.Q. Shao, H.L. Du, H. Ma, S.B. Qu, J. Wang, J.F. Wang, X.Y. Wei, Z. Xu, J. Mater. Chem. A. 5, 554 (2017)CrossRefGoogle Scholar
  32. 32.
    W.Q. Meng, R.Z. Zuo, S. Su, X.H. Wang, L.T. Li, J. Mater. Sci. Mater. Electron. 22, 1841 (2011)CrossRefGoogle Scholar
  33. 33.
    M.T. Yao, Y.P. Pu, L. Zhang, M. Chen, Mater. Lett. 174, 110 (2016)CrossRefGoogle Scholar
  34. 34.
    A. Paterson, H.T. Wong, Z. Liu, W. Ren, Z. Ye, Ceram. Int. 411, 57 (2015)CrossRefGoogle Scholar
  35. 35.
    L.H. Luo, B.Y. Wang, X.J. Jiang, W.P. Li, J. Mater. Sci. 49, 1659 (2014)CrossRefGoogle Scholar
  36. 36.
    N. Xu, Y. Liu, Z. Yu, R. Yao, J. Ye, Y. Lu, J. Mater. Sci. Mater. Electron. 27, 12479 (2016)CrossRefGoogle Scholar
  37. 37.
    Z.Y. Liu, P.R. Ren, C.B. Long, X. Wang, Y. Wan, G. Zhao, J. Alloy. Compd. 721, 538 (2017)CrossRefGoogle Scholar
  38. 38.
    D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)CrossRefGoogle Scholar
  39. 39.
    J.G. Hou, Y.F. Qu, R. Vaish, D. Krsmanovic, R.V. Kumar, J. Am. Ceram. Soc. 94, 2523 (2011)CrossRefGoogle Scholar
  40. 40.
    Y.P. Pu, M.T. Yao, L. Zhang, P.P. Jing, J. Alloy. Compd. 687, 689 (2016)CrossRefGoogle Scholar
  41. 41.
    Z.Y. Liu, H.Q. Fan, M. Li, J. Mater. Chem. C 3, 5851 (2015)CrossRefGoogle Scholar
  42. 42.
    M. Li, D.C. Sinclair, J. Appl. Phys. 111, 054106 (2012)CrossRefGoogle Scholar
  43. 43.
    Z.Y. Liu, H.Q. Fan, J.S. Lu, Y.Q. Mao, Y. Zhao, J. Eur. Ceram. Soc. 38, 2871 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification Processing, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations