Advertisement

Effect of SiC reinforcement on the reliability of Ag nanoparticle paste for high-temperature applications

  • Bo Hu
  • Fan Yang
  • Ye Peng
  • Chunjin HangEmail author
  • Hongtao Chen
  • Changwoo Lee
  • Shihua Yang
  • Mingyu LiEmail author
Article

Abstract

Ag nanoparticle (NP) paste is considered to be a next-generation thermal interface material. However, its sintered microstructure is at risk of volume shrinkage and mechanical property degradation under harsh environments. In this work, silicon carbide (SiC) NPs were mixed with Ag NP paste to improve the stability and reliability of sintered Ag joints. Robust joints were prepared by a rapid thermal compression method at 275 °C for 20 s. Although the addition of SiC NPs degraded the initial shear strengths of these joints, the SiC-containing joints exhibited excellent mechanical properties and microstructural stability during thermal shock tests from − 50 to 150 °C for up to 1000 cycles. When the added amount of SiC NPs was 2%, the joints achieved the highest shear strength of 87.1 MPa (after 1000 cycles). In addition, the shear strengths of the joints were investigated at 250 °C. The addition of SiC NPs is believed to enhance the reliability of joints at high temperature.

Notes

Acknowledgements

We acknowledge financial support from the Innovation Foundation of Shanghai Aerospace Science and Technology under Grant No. SAST2016050, the Shenzhen Science and Technology Plan Project under Grant Nos. JCYJ20160318095308401 and JCYJ20150529152949390 and the Guangzhou Science and Technology Plan Project under Grant No. 201604046029.

References

  1. 1.
    P. Peng, A. Hu, A.P. Gerlich, G. Zou, L. Liu, Y.N. Zhou, Joining of silver nanomaterials at low temperatures: processes, properties, and applications. ACS Appl. Mater. Interfaces. 7, 12597–12618 (2015)CrossRefGoogle Scholar
  2. 2.
    V.R. Manikam, K.Y. Cheong, Die attach materials for high temperature applications: a review. IEEE Trans. Compon. Packag. Manuf. Technol. 1, 457–478 (2011)CrossRefGoogle Scholar
  3. 3.
    K.S. Siow, Mechanical properties of nano-silver joints as die attach materials. J. Alloys Compd. 514, 6–19 (2012)CrossRefGoogle Scholar
  4. 4.
    M.Y. Li, Y. Xiao, Z.H. Zhang, J. Yu, Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications. ACS Appl. Mater. Interfaces 7, 9157–9168 (2015)CrossRefGoogle Scholar
  5. 5.
    T. Ishizaki, R. Watanabe, A new one-pot method for the synthesis of Cu nanoparticles for low temperature bonding. J. Mater. Chem. 22, 25198–25206 (2012)CrossRefGoogle Scholar
  6. 6.
    J. Liu, H. Chen, H. Ji, M. Li, Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles. ACS Appl. Mater. Interfaces 8, 33289 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Tsuji, S. Hikino, M. Matsunaga, Y. Sano, T. Hashizume, H. Kawazumi, Rapid synthesis of Ag@Ni core–shell nanoparticles using a microwave-polyol method. Mater. Lett. 64, 1793–1797 (2010)CrossRefGoogle Scholar
  8. 8.
    E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Metal–metal bonding process using Ag metallo-organic nanoparticles. Acta Mater. 53, 2385–2393 (2005)CrossRefGoogle Scholar
  9. 9.
    T. Wang, X. Chen, G.Q. Lu, G.Y. Lei, Low-temperature sintering with nano-silver paste in die-attached interconnection. J. Electron. Mater. 36, 1333–1340 (2007)CrossRefGoogle Scholar
  10. 10.
    H. Ogura, M. Maruyama, R. Matsubayashi, T. Ogawa, S. Nakamura, T. Komatsu, H. Nagasawa, A. Ichimura, S. Isoda, Carboxylate-passivated silver nanoparticles and their application to sintered interconnection: a replacement for high temperature lead-rich solders. J. Electron. Mater. 39, 1233–1240 (2010)CrossRefGoogle Scholar
  11. 11.
    J. Li, C.M. Johnson, C. Buttay, W. Sabbah, S. Azzopardi, Bonding strength of multiple SiC die attachment prepared by sintering of Ag nanoparticles. J. Mater. Process. Technol. 215, 299–308 (2015)CrossRefGoogle Scholar
  12. 12.
    S. Wang, M. Li, H. Ji, C. Wang, Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging. Scr. Mater. 69, 789–792 (2013)CrossRefGoogle Scholar
  13. 13.
    H. Yu, L. Li, Y. Zhang, Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications. Scr. Mater. 66, 931–934 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Xie, Y. Wang, Y. Mei, H. Xie, K. Zhang, S. Feng, K.S. Siow, X. Li, G.Q. Lu, Rapid sintering of nano-Ag paste at low current to bond large area (> 100 mm2) power chips for electronics packaging. J. Mater. Process. Technol. 255, 644–649 (2018)CrossRefGoogle Scholar
  15. 15.
    L. Jiang, T.G. Lei, K.D.T. Ngo, G.Q. Lu, S. Luo, Evaluation of thermal cycling reliability of sintered nanosilver versus soldered joints by curvature measurement. IEEE Trans. Compon. Packag. Manuf. Technol. 4, 751–761 (2014)CrossRefGoogle Scholar
  16. 16.
    W. Sabbah, S. Azzopardi, C. Buttay, R. Meuret, E. Woirgard, Study of die attach technologies for high temperature power electronics: Silver sintering and gold–germanium alloy. Microelectron. Reliab. 53, 1617–1621 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Li, X. Li, L. Wang, Y.H. Mei, G.Q. Lu, A novel multiscale silver paste for die bonding on bare copper by low-temperature pressure-free sintering in air. Mater. Des. 140, 64–72 (2017)CrossRefGoogle Scholar
  18. 18.
    S.Y. Zhao, X. Li, Y.H. Mei, G.Q. Lu, Effect of silver flakes in silver paste on the joining process and properties of sandwich power modules (IGBTs chip/silver paste/bare Cu). J. Electron. Mater. 45, 1–11 (2016)CrossRefGoogle Scholar
  19. 19.
    H. Zhang, C. Chen, S. Nagao, K. Suganuma, Thermal fatigue behavior of silicon-carbide-doped silver microflake sinter joints for die attachment in silicon/silicon carbide power devices. J. Electron. Mater. 46, 1055–1060 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Zhang, S. Nagao, K. Suganuma, Addition of SiC particles to Ag die-attach paste to improve high-temperature stability; grain growth kinetics of sintered porous Ag. J. Electron. Mater. 44, 1–8 (2015)CrossRefGoogle Scholar
  21. 21.
    J.G. Bai, J.N. Calata, G.Q. Lu, Processing and characterization of nanosilver pastes for die-attaching SiC devices. IEEE Trans. Electron. Packag. Manuf. 30, 241–245 (2007)CrossRefGoogle Scholar
  22. 22.
    S. Sakamoto, T. Sugahara, K. Suganuma, Microstructural stability of Ag sinter joining in thermal cycling. J. Mater. Sci. 24, 1332–1340 (2013)Google Scholar
  23. 23.
    R. Mahmudi, S. Alibabaie, Elevated-temperature shear strength and hardness of Zn–3Cu–xAl ultra-high-temperature lead-free solders. Mater. Sci. Eng. A 559, 421–426 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology at ShenzhenShenzhenChina
  2. 2.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina
  3. 3.Korea Institute of Industrial TechnologyIncheonSouth Korea
  4. 4.Shanghai Aerospace Equipments ManufacturerShanghaiChina

Personalised recommendations