Advertisement

Effects of graphene oxide on the electromigration lifetime of lead-free solder joints

  • Yong-Ho Ko
  • Kirak Son
  • Gahui Kim
  • Young-Bae Park
  • Dong-Yurl Yu
  • Junghwan Bang
  • Taek-Soo Kim
Article
  • 6 Downloads

Abstract

Electromigration (EM) is the mass transport of atoms due to electron flow, which induces a disconnect in electronic packaging. Recently, EM has received growing attention because it occurs easily when the size of joints in electronic packaging is reduced for better integration. Many researchers tried to improve the EM properties of solder joints by adding minor elements or using composites. Some studies reported that adding graphene, which is widely researched in recent years, to electronic packaging could improve the EM property. However, there is a lack of research on the EM lifetime characteristics with other materials added to the solder, such as minor elements, composites, and graphene. In this study, the effect of graphene oxide (GO) powder in Sn–3.0Ag–0.5Cu Pb-free solder paste on the EM lifetime of the solder joint was investigated. Using the fabricated solder paste and a reflow process, the printed circuit board finished with organic solderability preservative on Cu pad and Ni/Au-finished ball grid array packages with solder balls were joined. Afterwards, EM tests were performed at an elevated temperature of 130 °C and a current density of 1.0 × 103 A/cm2. The EM lifetime increased as the amount of added GO powders increased. Notably, the addition of 0.2 wt% GO nearly doubled the EM lifetime in the solder joint compared to that without GO.

Notes

Acknowledgements

This work was supported through grants from the Korea Institute of Industrial Technology (KITECH) and National Research Foundation of Korea (NRF, 2016R1D1A3B03933937), Republic of Korea.

References

  1. 1.
    M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)CrossRefGoogle Scholar
  2. 2.
    Y. Xia, X. Xie, J. Alloys Compd. 454, 174 (2008)CrossRefGoogle Scholar
  3. 3.
    S.K. Kang, W.K. Choi, M.J. Yim, D.Y. Shih, J. Electron. Mater. 31, 1292 (2002)CrossRefGoogle Scholar
  4. 4.
    R.R. Tummala, Fundamentals of Microsystems Packaging (McGraw-Hill, New York, 2001), pp. 204–205Google Scholar
  5. 5.
    C. Chen, S.W. Liang, J. Mater. Sci.: Mater. Electron. 18, 259 (2007)Google Scholar
  6. 6.
    Y.R. Yoo, Y.S. Kim, Met. Mater. Int. 16, 739 (2010)CrossRefGoogle Scholar
  7. 7.
    J.R. Lloyd, J. Phys. D 32, R109 (1999)CrossRefGoogle Scholar
  8. 8.
    I. Jeon, Y.B. Park, Microelectron. Reliab. 44, 917 (2004)CrossRefGoogle Scholar
  9. 9.
    K.N. Tu, J. Appl. Phys. 94, 5451 (2003)CrossRefGoogle Scholar
  10. 10.
    M. Ding, G. Wang, B. Chao, P.S. Ho, P. Su, T. Uehling, J. Appl. Phys. 99, 094906 (2006)CrossRefGoogle Scholar
  11. 11.
    J.H. Lee, Y.B. Park, J. Electron. Mater. 38, 2194 (2009)CrossRefGoogle Scholar
  12. 12.
    Y.C. Hu, Y.H. Lin, C.R. Kao, K.N. Tu, J. Mater. Res. 18, 2544 (2003)CrossRefGoogle Scholar
  13. 13.
    K.N. Tu, Microelectron. Reliab. 51, 517 (2011)CrossRefGoogle Scholar
  14. 14.
    Y.S. Lai, H.M. Tong, K.N. Tu, Microelectron. Reliab. 49, 221 (2009)CrossRefGoogle Scholar
  15. 15.
    S.H. Kim, J.M. Kim, S. Yoo, Y.B. Park, Curr. Appl. Phys. 13, S103 (2013)CrossRefGoogle Scholar
  16. 16.
    S.H. Chae, X. Zhang, K.H. Lu, H.L. Chao, P.S. Ho, M. Ding, P. Su, T. Uehling, L.N. Ramanathan, J. Mater. Sci.: Mater. Electron. 18, 247 (2007)Google Scholar
  17. 17.
    T.Y. Lee, K.N. Tu, D.R. Frear, J. Appl. Phys. 90, 4502 (2001)CrossRefGoogle Scholar
  18. 18.
    K. Yamanaka, Y. Tsukada, K. Suganuma, Scripta Mater. 55, 867 (2006)CrossRefGoogle Scholar
  19. 19.
    W.H. Lin, A.T. Wu, S.Z. Lin, T.H. Chuang, K.N. Tu, J. Electron. Mater. 36, 753 (2007)CrossRefGoogle Scholar
  20. 20.
    T.L. Shao, Y.H. Chen, S.H. Chiu, C. Chen, J. Appl. Phys. 96, 4518 (2004)CrossRefGoogle Scholar
  21. 21.
    Y.S. Lai, K.M. Chen, C.L. Kao, C.W. Lee, Y.T. Chiu, Microelectron. Reliab. 47, 1273 (2007)CrossRefGoogle Scholar
  22. 22.
    H.J. Lin, J.S. Lin, T.H. Chuang, J. Alloys Compd. 487, 458 (2009)CrossRefGoogle Scholar
  23. 23.
    F. Ren, J.W. Nah, K.N. Tu, B. Xiong, L. Xu, J.H.L. Pang, Appl. Phys. Lett. 89, 141914 (2006)CrossRefGoogle Scholar
  24. 24.
    M. Lu, D.Y. Shih, P. Lauro, C. Goldsmith, D.W. Henderson, Appl. Phys. Lett. 92, 211909 (2008)CrossRefGoogle Scholar
  25. 25.
    L. Zhang, X.Y. Fan, C.W. He, Y.H. Guo, J. Mater. Sci.: Mater. Electron. 24, 3249 (2013)Google Scholar
  26. 26.
    J.M. Kim, M.H. Jeong, S. Yoo, Y.B. Park, J. Electron. Mater. 41, 791 (2012)CrossRefGoogle Scholar
  27. 27.
    X. Gu, K. Ding, J. Cai, L. Kong, Proceedings of 11th International Conference on Electronic Packaging Technology & High Density Packaging (2010), pp. 1273–1279Google Scholar
  28. 28.
    L. Ma, G. Xu, J. Sun, F. Guo, X. Wang, J. Mater. Sci. 46, 4896 (2011)CrossRefGoogle Scholar
  29. 29.
    R. Zhao, L. Ma, Y. Zuo, S. Liu, F. Guo, J. Electron. Mater. 42, 280 (2013)CrossRefGoogle Scholar
  30. 30.
    D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, ISRN Condens. Matter Phys. (2012).  https://doi.org/10.5402/2012/501686 CrossRefGoogle Scholar
  31. 31.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  32. 32.
    C.G. Kang, S.K. Lim, S. Lee, S.K. Lee, C. Cho, Y.G. Lee, H.J. Hwang, Y. Kim, H.J. Choi, S.H. Choe, Nanotechnology 24, 115707 (2013)CrossRefGoogle Scholar
  33. 33.
    X. Hu, Y.C. Chan, K. Zhang, K.C. Yung, J. Alloys Compd. 580, 162 (2013)CrossRefGoogle Scholar
  34. 34.
    W.H. Zhong, Y.C. Chan, B.Y. Wu, M.O. Alam, J.F. Guan, J. Mater. Sci. 42, 5239 (2007)CrossRefGoogle Scholar
  35. 35.
    X.D. Liu, Y.D. Han, H.Y. Jing, J. Wei, L.Y. Xu, Mater. Sci. Eng. A 562, 25 (2013)CrossRefGoogle Scholar
  36. 36.
    C. Ho, R. Tsai, Y. Lin, C. Kao, J. Electron. Mater. 31, 584 (2002)CrossRefGoogle Scholar
  37. 37.
    R. Darveaux, C. Reichman, N. Islam, Proceedings of 56th Electronic Components and Technology Conference (2006), pp. 906–917Google Scholar
  38. 38.
    K. Yamamoto, T. Kato, T. Kawamura, H. Nakano, M. Koizumi, H. Akahoshi, R. Satoh, Weld. Int. 23, 490 (2009)CrossRefGoogle Scholar
  39. 39.
    D.Q. Yu, C.M.L. Wu, D.P. He, N. Zhao, L. Wang, J.K.L. Lai, J. Mater. Res. 20, 2205 (2005)CrossRefGoogle Scholar
  40. 40.
    G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, J. Mater. Sci.: Mater. Electron. 21, 421 (2010)Google Scholar
  41. 41.
    Y.H. Lin, C.M. Tsai, Y.C. Hu, Y.L. Lin, C.R. Kao, J. Electron. Mater. 34, 27 (2005)CrossRefGoogle Scholar
  42. 42.
    Y.H. Lin, Y.C. Hu, C.M. Tsai, C.R. Kao, K.N. Tu, Acta Mater. 53, 2029 (2005)CrossRefGoogle Scholar
  43. 43.
    J.S. Zhang, Y.C. Chan, Y.P. Wu, H.J. Xi, F.S. Wu, J. Alloys Compd. 458, 492 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Joining R&D GroupKorea Institute of Industrial Technology (KITECH)IncheonRepublic of Korea
  2. 2.Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  3. 3.School of Materials Science and EngineeringAndong National UniversityAndong-siRepublic of Korea

Personalised recommendations