Synthesis of B doped graphene/polyaniline hybrids for high-performance supercapacitor application

  • Rini Jain
  • Rashmi Mehrotra
  • Satyendra MishraEmail author


The present work emphasizes improvement on the electrochemical properties of polyaniline/B doped graphene (PANI/BG) hybrid composite. The structure, morphology and electrochemical properties of the hybrid composite were characterized by XRD, Raman, FTIR, XPS, FESEM, HRTEM, cyclic voltammetry, electrical impedance spectroscopy and charge–discharge test respectively. The electrochemical results revealed that the resultant PANI/BG hybrid composite showed an enhancement in electrochemical properties. The calculated specific capacitance of the PANI/BG hybrid composite in a three-electrode system was about 1134 F g−1 in 1 M H2SO4 at 1 mV s−1 while 306 F g−1 of BG and 400 F g−1 of PANI. The PANI/BG showed greater cycling stability because the capacitance remains as high as 89% even after 5000 charging–discharging cycles at a rate of 1 A g−1 (60% for PANI and 86% for BG). The improved electrochemical performance of the composite is due to the BG which tailors the electronic properties of the graphene with a combination of pseudocapacitive conducting PANI.



RJ thanks to Department of Science and Technology (DST) for Inspire fellowship (DST/INSPIRE Fellowship/2013/902). Authors also thank MNIT-Jaipur, SAIF-IIT Powai, IIT-Kanpur and Dr. Shirale, School of Physical Sciences, North Maharashtra University for TEM, Raman characterizations, AFM measurements and electrochemical measurements, respectively. Authors are also thankful to Dr. Navinchandra Shimpi, University of Mumbai for XPS characterization.


  1. 1.
    A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nat. Mater. 4, 366 (2005)CrossRefGoogle Scholar
  2. 2.
    M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)CrossRefGoogle Scholar
  3. 3.
    S.R. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao, J. Chem. Sci. 120, 9 (2008)CrossRefGoogle Scholar
  4. 4.
    G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Sun, Q. Wu, G. Shi, Energy Environ. Sci. 4, 1113 (2011)CrossRefGoogle Scholar
  6. 6.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Zaharaddeen, C. Iro, S.S. Subramani, Int. J. Electrochem. Sci. 11, 0628 (2016)Google Scholar
  8. 8.
    T. Sheng, Y.F. Xu, Y.X. Jiang, L. Huang, N. Tian, Z. Zhou, I. Broadwell, S. Sun, Acc. Chem. Res. 49, 2569 (2016)CrossRefGoogle Scholar
  9. 9.
    D.P. Hansora, N.G. Shimpi, S. Mishra, JOM 67, 2855 (2015). CrossRefGoogle Scholar
  10. 10.
    D.P. Hansora, N.G. Shimpi, S. Mishra, RSC Adv. 5, 107716 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Mishra, D.P. Hansora, Graphene Nanomaterials: Fabrication, Properties, and Applications, 1st edn. (CRC press, New york, 2017)CrossRefGoogle Scholar
  12. 12.
    A. Sumboja, X. Wang, J. Yan, P.S. Lee, Electrochim. Acta 65, 90 (2012)CrossRefGoogle Scholar
  13. 13.
    D.P. Hansora, R. Yadav, N.G. Shimpi, S. Mishra, RSC Adv. 5, 99253 (2015)CrossRefGoogle Scholar
  14. 14.
    A. Junwei, J. Liu, Y. Zhou, H. Zhao, Y. Ma, M. Li, M. Yu, S. Li, J. Phys. Chem. C 116, 19699 (2012)CrossRefGoogle Scholar
  15. 15.
    H. Tang, X. Bai, E. Zhao, Z. Wu, Synth. Met. 232, 131 (2017)CrossRefGoogle Scholar
  16. 16.
    P. Sekar, B. Anothumakkool, S. Kurungot, ACS Appl. Mater. Interfaces 7, 7661–7669 (2015)CrossRefGoogle Scholar
  17. 17.
    L.A. Yolshina, E.G. Vovkotrub, V.A. Yolshina, A.M. Murzakaev, Synth. Met. 205, 85 (2015)CrossRefGoogle Scholar
  18. 18.
    V. Thirumala, A. Panduranganb, R. Jayavelc, R. Ilangovand, Synth. Met. 220, 524 (2016)CrossRefGoogle Scholar
  19. 19.
    R. Santhosh, S.S. Raman, S.M. Krishna, S. Sai Ravuri, V. Sandhya, S. Ghosh, N.K. Sahu, S. Punniyakoti, M. Karthik, P. Kollu, S.K. Jeong, Electrochim. Acta 276, 284 (2018)CrossRefGoogle Scholar
  20. 20.
    R. Jain, D.K. Sharma, S. Mishra, J. Electron. Mater. (communicated)Google Scholar
  21. 21.
    N. Chen, Y. Ren, P. Kong, L. Tan, H. Feng, Y. Luo, Appl. Surf. Sci. 392, 71 (2017)CrossRefGoogle Scholar
  22. 22.
    J. Luo, W. Zhong, Y. Zou, C. Xiong, W. Yang, J. Power Sources 319, 73 (2016)CrossRefGoogle Scholar
  23. 23.
    J. Zhu, L. Kong, X. Shen, Q. Chen, Z. Ji, J. Wang, K. Xu, G. Zhu, Appl. Surf. Sci. 428, 348 (2018)CrossRefGoogle Scholar
  24. 24.
    Q. Hao, X. Xia, W. Lei, W. Wang, J. Qiu, Carbon 81, 552 (2015)CrossRefGoogle Scholar
  25. 25.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)CrossRefGoogle Scholar
  26. 26.
    J. Han, L.L. Zhang, S. Lee, J. Oh, K.S. Lee, J.R. Potts, J. Ji, X. Zhao, R.S. Ruoff, S. Park, ACS Nano 7, 19 (2013)CrossRefGoogle Scholar
  27. 27.
    W. Zhao, D.W. He, Y.S. Wang, Y. Hu, X. Du, X. Hao, RSC Adv. 5, 98241 (2015)CrossRefGoogle Scholar
  28. 28.
    P. Bari, S. Lanjewar, D. Hansora, S. Mishra, J. Appl. Polym. Sci. (2015) Google Scholar
  29. 29.
    X. Wang, G. Sun, P. Routh, D.H. Kim, W. Huang, P. Chen, Chem. Soc. Rev. 43, 7067 (2014)CrossRefGoogle Scholar
  30. 30.
    J.P. Pouget, M.E. Jozefowicz, A.J. Epstein, X. Tang, A.G. Macdiarmid, 24, 779 (1991)Google Scholar
  31. 31.
    T. Yang, H. Lin, X. Zheng, K.P. Lo, B. Jia, J. Mater. Chem. A 5, 16537 (2017)CrossRefGoogle Scholar
  32. 32.
    Z. Tong, Y. Yang, J. Wang, J. Zhao, B.L. Suc, Y. Li, J. Mater. Chem. A 2, 4642 (2014)CrossRefGoogle Scholar
  33. 33.
    H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, ACS Appl. Mater. Interfaces 2, 821–828 (2010)CrossRefGoogle Scholar
  34. 34.
    R. Jain, S. Mishra, RSC Adv. 6, 27404 (2016)CrossRefGoogle Scholar
  35. 35.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn. (Wiley, New York, 1986)Google Scholar
  36. 36.
    J. Fei, Y. Cui, X. Yan, Y. Yang, K. Wang, J. Li, ACS Nano 3(11), 3714 (2009)CrossRefGoogle Scholar
  37. 37.
    T. Sen, S. Mishra, N.G. Shimpi, Mater. Sci. Eng. B 220, 13 (2017)CrossRefGoogle Scholar
  38. 38.
    Z.S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, Adv. Mater. 24, 5130 (2012)CrossRefGoogle Scholar
  39. 39.
    L. Cui, J. Yu, Y. Lv, G. Li, S. Zhou, Polym. Compos. 34, 1119 (2013)CrossRefGoogle Scholar
  40. 40.
    J. Luo, W. Zhong, Y. Zou, C. Xiong, W. Yang, J. Power Sources 319, 73–81 (2016)CrossRefGoogle Scholar
  41. 41.
    L.Q. Xu, Y.L. Liu, K.G. Neoh, E.T. Kang, G.D. Fu, Macromol. Rapid Commun. 32, 684 (2011)CrossRefGoogle Scholar
  42. 42.
    L.Q. Xu, W.J. Yang, K.G. Neoh, E.T. Kang, G.D. Fu, Macromolecules 43, 8336 (2010)CrossRefGoogle Scholar
  43. 43.
    D.K. Mahla, S. Bhandari, M. Rahaman, D. Khastgir, J. Electrochem. Sci. Eng. 3(4), 157 (2013)Google Scholar
  44. 44.
    H. Wang, Z. Guo, S. Yao, Z. Li, W. Zhang, Int. J. Electrochem. Sci. 12, 3721 (2017)CrossRefGoogle Scholar
  45. 45.
    H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Nanoscale 2, 2164 (2010)CrossRefGoogle Scholar
  46. 46.
    L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao, Adv. Mater. 21, 4726 (2009)Google Scholar
  47. 47.
    Z.Y. Yu, L.F. Chen, L.T. Song, Y.W. Zhu, H. Ji, S.H. Yu, Nano Energy 15, 235 (2015)CrossRefGoogle Scholar
  48. 48.
    Y.B. Tang, L.C. Yin, Y. Yang, X.H. Bo, Y.L. Cao, H.E. Wang, ACS Nano 6, 1970 (2012)CrossRefGoogle Scholar
  49. 49.
    M. Hassan, K. Reddy, E. Haque, S.N. Faisal, S. Ghasemi, A. Minett, V. Gomes, Compos. Sci. Technol. 98, 1 (2014)CrossRefGoogle Scholar
  50. 50.
    J.J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, Z.X. Wei, ACS Nano 4, 5019 (2010)CrossRefGoogle Scholar
  51. 51.
    Q. Hao, X. Xia, W. Lei, W. Wang, J. Qiu, Carbon 81, 552–563 (2015)CrossRefGoogle Scholar
  52. 52.
    J.H. Liu, J.W. An, Y.C. Zhou, Y.X. Ma, M.L. Liu, M. Yu, S.M. Li, Appl. Mater. Interfaces 4, 2870 (2012)CrossRefGoogle Scholar
  53. 53.
    N.A. Kumar, H. Choi, Y.R. Shin, D.W. Chang, L. Dai, J. Baek, ACS Nano 6, 1715 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaonIndia
  2. 2.Chemical Engineering DepartmentBanasthali UniversityVanasthaliIndia

Personalised recommendations