Advertisement

Cu doped ZnO hierarchical nanostructures: morphological evolution and photocatalytic property

  • Qun Ma
  • Xudong Yang
  • Xiangzhou Lv
  • Hanxiang Jia
  • Yongqian Wang
Article
  • 16 Downloads

Abstract

Copper doped ZnO hierarchical nanostructures have been synthesized with a facile solution route at room temperature. Structural properties of the as-synthesized nanostructures have been studied X-ray diffraction, field emission scanning electron microscopy with energy dispersive. Meanwhile, light-absorption properties were studied with UV–Vis absorption spectroscopy. Photocatalytic performance of Cu-doped ZnO hierarchical nanostructures were evaluated by the light-driven degradation of methylene blue. The results indicated that Cu doping lead to the augment of average crystallite size of ZnO crystals. Moreover, morphological evolution of ZnO nanostructures was found with the addition of Cu ions. The photocatalytic test showed that there is an optimum Cu doping concentration which results in the enhancement of photocatalytic performance of Cu doped ZnO hierarchical nanostructures, compared with pristine ZnO. A novel and reasonable mechanism was proposed. It is believed that the enhanced photocatalytic performance of Cu doped ZnO hierarchical nanostructures can be attributed to the formation of acceptor level (Cu2+–Cu+) in the midgap of ZnO, which improved the utilization of light and separation efficiency of photogenerated electron hole pairs.

Notes

Acknowledgements

Y. Q. Wang designed and directed the project. Q. Ma and X. D. Yang carried out the experiments, performed measurements and carried out data analysis with help from X. Z. Lv and H. X. Jia, and Y. Q. Wang wrote the manuscript. All authors contributed to discussions. The project was supported by the Fundamental Research Funds for National Universities, China University of Geosciences (Wuhan).

References

  1. 1.
    S. Dutta, S. Chattopadhyay, A. Sarkar, M. Chakrabarti, D. Sanyal, D. Jana, Role of defects in tailoring structural, electrical and optical properties of ZnO. Prog. Mater. Sci. 54, 89–136 (2009)CrossRefGoogle Scholar
  2. 2.
    A.B. Djurišić, X. Chen, Y.H. Leung, A.M.C. Ng, ZnO nanostructures: growth, properties and applications. J. Mater. Chem. 22, 6526–6535 (2012)CrossRefGoogle Scholar
  3. 3.
    J.C. Fan, K. Sreekanth, Z. Xie, S. Chang, K.V. Rao, p-Type ZnO materials: theory, growth, properties and devices. Prog. Mater. Sci. 58, 874–985 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Maiti, S. Pal, K.K. Chattopadhyay, Recent advances in low temperature, solution processed morphology tailored ZnO nanoarchitectures for electron emission and photocatalysis applications. CrystEngComm 17, 9264–9295 (2015)CrossRefGoogle Scholar
  5. 5.
    Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, H. Xu, Complex and oriented ZnO nanostructures. Nat. Mater. 2, 821 (2003)CrossRefGoogle Scholar
  6. 6.
    S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 013001 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Wei, L. Pan, W. Huang, Recent progress in the ZnO nanostructure-based sensors. Mater. Sci. Eng. B 176, 1409–1421 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, Q. Ma, H. Jia, Z. Wang, One-step solution synthesis and formation mechanism of flower-like ZnO and its structural and optical characterization. Ceram. Int. 42, 10751–10757 (2016)CrossRefGoogle Scholar
  10. 10.
    S.J. Yang, S. Nam, T. Kim, J.H. Im, H. Jung, J.H. Kang, S. Wi, B. Park, C.R. Park, Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal–organic framework. J. Am. Chem. Soc. 135, 7394–7397 (2013)CrossRefGoogle Scholar
  11. 11.
    K.C. Pradel, W. Wu, Y. Zhou, X. Wen, Y. Ding, Z.L. Wang, Piezotronic effect in solution-grown p-type ZnO nanowires and films. Nano Lett. 13, 2647–2653 (2013)CrossRefGoogle Scholar
  12. 12.
    X. Luo, Z. Lou, L. Wang, X. Zheng, T. Zhang, Fabrication of flower-like ZnO nanosheet and nanorod-assembled hierarchical structures and their enhanced performance in gas sensors. New J. Chem. 38, 84–89 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Su, J. Li, Z. Luo, B. Lu, P. Li, Microstructure, growth process and enhanced photocatalytic activity of flower-like ZnO particles. RSC Adv. 6, 7403–7408 (2016)CrossRefGoogle Scholar
  14. 14.
    J. Zhang, P. Liu, Y. Zhang, G. Xu, Z. Lu, X. Wang, Y. Wang, L. Yang, X. Tao, H. Wang, Enhanced performance of nano-Bi 2 WO 6-graphene as pseudocapacitor electrodes by charge transfer channel. Sci. Rep. 5, 8624 (2015)CrossRefGoogle Scholar
  15. 15.
    Q. Ma, Y. Wang, J. Kong, H. Jia, Tunable synthesis, characterization and photocatalytic properties of various ZnS nanostructures. Ceram. Int. 42, 2854–2860 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Zhang, B. Wu, L. Huang, P. Liu, X. Wang, Z. Lu, G. Xu, E. Zhang, H. Wang, Z. Kong, Anatase nano-TiO2 with exposed curved surface for high photocatalytic activity. J. Alloy. Compd. 661, 441–447 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Yang, H. Jia, X. Lv, Y. Wang, Facile preparation of urchin-like ZnO nanostructures and their photocatalytic performance. Ceram. Int. 42, 12409–12413 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Ahmad, E. Ahmed, Z. Hong, X. Jiao, T. Abbas, N. Khalid, Enhancement in visible light-responsive photocatalytic activity by embedding Cu-doped ZnO nanoparticles on multi-walled carbon nanotubes. Appl. Surf. Sci. 285, 702–712 (2013)CrossRefGoogle Scholar
  19. 19.
    F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdi, M.B. Said, A. Ghrabi, R. Schneider, Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis. Mater. Des. 101, 309–316 (2016)CrossRefGoogle Scholar
  20. 20.
    L. Shen, R. Wu, H. Pan, G. Peng, M. Yang, Z. Sha, Y. Feng, Mechanism of ferromagnetism in nitrogen-doped ZnO: first-principle calculations. Phys. Rev. B 78, 073306 (2008)CrossRefGoogle Scholar
  21. 21.
    G.Z. Xing, J.B. Yi, J.G. Tao, T. Liu, L.M. Wong, Z. Zhang, G.P. Li, S.J. Wang, J. Ding, T.C. Sum, Comparative study of room-temperature ferromagnetism in Cu-doped ZnO nanowires enhanced by structural inhomogeneity. Adv. Mater. 20, 3521–3527 (2008)CrossRefGoogle Scholar
  22. 22.
    C. Xia, F. Wang, C. Hu, Theoretical and experimental studies on electronic structure and optical properties of Cu-doped ZnO. J. Alloy. Compd. 589, 604–608 (2014)CrossRefGoogle Scholar
  23. 23.
    G. Liang, L. Hu, W. Feng, G. Li, A. Jing, Enhanced photocatalytic performance of ferromagnetic ZnO: Cu hierarchical microstructures. Appl. Surf. Sci. 296, 158–162 (2014)CrossRefGoogle Scholar
  24. 24.
    R.C. Pawar, D.-H. Choi, J.-S. Lee, C.S. Lee, Formation of polar surfaces in microstructured ZnO by doping with Cu and applications in photocatalysis using visible light. Mater. Chem. Phys. 151, 167–180 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Kuriakose, B. Satpati, S. Mohapatra, Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Phys. Chem. Chem. Phys. 17, 25172–25181 (2015)CrossRefGoogle Scholar
  26. 26.
    Z. Zhang, J.B. Yi, J. Ding, L.M. Wong, H.L. Seng, S.J. Wang, J.G. Tao, G.P. Li, G.Z. Xing, T.C. Sum, Cu-doped ZnO nanoneedles and nanonails: morphological evolution and physical properties. J. Phys. Chem. C 112, 9579–9585 (2008)CrossRefGoogle Scholar
  27. 27.
    G. Li, T. Hu, G. Pan, T. Yan, X. Gao, H. Zhu, Morphology—function relationship of ZnO: polar planes, oxygen vacancies, and activity. J. Phys. Chem. C 112, 11859–11864 (2008)CrossRefGoogle Scholar
  28. 28.
    J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968)CrossRefGoogle Scholar
  29. 29.
    F. Zhang, X.-W. He, W.-Y. Li, Y.-K. Zhang, One-pot aqueous synthesis of composition-tunable near-infrared emitting Cu-doped CdS quantum dots as fluorescence imaging probes in living cells. J. Mater. Chem. 22, 22250–22257 (2012)CrossRefGoogle Scholar
  30. 30.
    R. Xie, X. Peng, Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J. Am. Chem. Soc. 131, 10645–10651 (2009)CrossRefGoogle Scholar
  31. 31.
    B.B. Srivastava, S. Jana, N. Pradhan, Doping Cu in semiconductor nanocrystals: some old and some new physical insights. J. Am. Chem. Soc. 133, 1007–1015 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanChina

Personalised recommendations