Advertisement

Co-precipitation synthesis, structural characterization and fluorescent analysis of Nd3+ doped Y3Al5O12 and Yb3Al5O12 nanocrystallines

  • Taiping Xie
  • Li Zhang
  • Jiankang Wang
  • Taiping Xie
  • Quanxi Zhu
  • Xiaodong Zhang
Article

Abstract

Nd3+, as one of the most important rare-earth (RE) ion, has been playing a significant role in pumping the infrared (IR) light. Depending on different synthesis strategies, doping content, and crystal lattice, however, Nd3+ always shows different IR intensity. In this work, we have fabricated two series of Nd3+ doped nanocrystallines that share with the same crystal structure, i.e., Nd3+ doped Y3Al5O12 (YAG) and Yb3Al5O12 (YbAG), through using the co-precipitation synthesis method while the ammonium bicarbonate as the precipitant agent. To reveal the influence of the synthesis conditions (e.g., synthetic temperature and pH value) on structural and florescent properties of Nd3+ doped YAG and YbAG nanocrystallines, several techniques have been performed in this work, including the X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric-differential scanning calorimeter (TG-DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman and florescent spectroscopy spectra. Our results reveal that the optimal synthesis conditions are 1000 °C and pH 8 for YAG:Nd3+ and 900 °C and pH 9 for YbAG:Nd3+. Moreover, we also find the optimal Nd3+ doping contents of the YAG:Nd3+ and YbAG:Nd3+ nanocrystallines are 3% and 1.5%, which correspond to the strongest fluorescent intensity upon excitation at 808 nm and 980 nm, respectively. Typically, we reveal that substitution of Y with Yb ions could allow to enhancing the Nd3+ fluorescent intensity upon excitation at 808 nm. This work provides new insights into designing excellent crystal materials that can allow us to realize the laser transparent ceramics.

Notes

Acknowledgements

We acknowledge the financial support from youth research talents’ growth support program of Yangtze Normal University. We would like to appreciate our associates, especially Xiulong Lan, Chunlan He, Yuan Peng, Songli Liu, and Yajing Wang for their valuable contributions to our research program. We gratefully acknowledge many important contributions from the researchers of all reports cited in our paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    I. Akio, L.A. Yan, Ceramic laser materials. Nat. Photonics 2, 721–727 (2008)CrossRefGoogle Scholar
  2. 2.
    R. Komatsu, T. Sugawara, K. Sassa, Growth and ultraviolet application of Li2B4O7 crystals: generation of the fourth and fifth harmonics of Nd:Y3Al5O12 lasers. Appl. Phys. Lett. 70, 3492 (1997)CrossRefGoogle Scholar
  3. 3.
    J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.F. Bisson, Y. Feng, A. Shirakawa, K.I. Ueda, T. Yanagitani, A.A. Kaminskii, 110 W ceramic Nd3+:Y3Al5O12 laser. Appl. Phys. B 79, 25–28 (2004)CrossRefGoogle Scholar
  4. 4.
    J.R. Lu, K. Ueda, H. Yagi, T. Yangitani, Y. Akiyama, A. AKaminskii, Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials. J. Alloy Compds. 341, 220–225 (2002)CrossRefGoogle Scholar
  5. 5.
    R.J. Ralph, F.K. William, J.W. Marvin, Measurement of excited-state-absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d-4f rare-earth lasers. Appl. Phys. Lett. 33, 410 (2008)Google Scholar
  6. 6.
    F.W. Kang, X.B. Yang, M.Y. Peng, L. Wondraczek, Z.J. Ma, Q.Y. Zhang, J.R. Qiu, Red photoluminescence from Bi3+ and the influence of the oxygen vacancy perturbation in ScVO4: a combined experimental and theoretical study. J. Phys. Chem. C 118, 7515–7522 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Dorogova, A. Navrotsky, L.A. Boatner, Enthalpies of formation of rare earth orthovanadates, REVO4. J. Solid State Chem. 180, 847–851 (2007)CrossRefGoogle Scholar
  8. 8.
    I.L. Snetkov, D.E. Silin, O.V. Palashov, E.A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, A.A. Kaminskii, Thermo-optical constants of sesquioxide laser ceramics Yb3+:Ln2O3 (Ln = Y,Lu,Sc). Phys. Status Solidi A 210, 907–913 (2013)CrossRefGoogle Scholar
  9. 9.
    X.M. Zhang, Z.W. Quan, J. Yang, P.P. Yang, H.Z. Lian, J. Lin, Solvothermal synthesis of well-dispersed MF2 (M = Ca, Sr, Ba) nanocrystals and their optical properties. Nanotechnology 19, 075603 (2008)CrossRefGoogle Scholar
  10. 10.
    K. Niwa, Y. Furukawa, S. Takekawa, K. Kitamura, Growth and characterization of MgO doped near stoichiometric LiNbO3 crystals as a new nonlinear optical material. J. Cryst. Growth 208, 493–500 (2000)CrossRefGoogle Scholar
  11. 11.
    R. Reisfeld, D. Brusilovsky, M. Eyal, E. Miron, Z. Burstein, J. Ivri, A new solid-state tunable laser in the visible. Chem. Phys. Lett. 160, 43–44 (1989)CrossRefGoogle Scholar
  12. 12.
    C. Czeranowsky, E. Heumann, G. Huber, All-solid-state continuous-wave frequency-doubled Nd:YAG-BiBO laser with 2.8-W output power at 473 nm. Opt. Lett. 28, 432–434 (2003)CrossRefGoogle Scholar
  13. 13.
    D.A. Rockwell, A review of phase-conjugate solid-state lasers. IEEE J Quantum Elect. 24, 1124–1140 (1988)CrossRefGoogle Scholar
  14. 14.
    J.J. Zayhowski, A. Mooradian, Single-frequency microchip Nd lasers. Opt. Lett. 14, 24–26 (1989)CrossRefGoogle Scholar
  15. 15.
    B. Liu, J. Li, R. Yavetskiy, Fabrication of YAG transparent ceramics using carbonate precipitated yttria powder. J. Eur. Ceram. Soc. 35, 2379–2390 (2015)CrossRefGoogle Scholar
  16. 16.
    L. Wen, X. Sun, Z. Xiu, Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics. J. Eur. Ceram. Soc. 24, 2681–2688 (2004)CrossRefGoogle Scholar
  17. 17.
    P.V. Lu, Ceramic laser materials and the prospect for high power lasers. Opt. Mater. 31, 701–706 (2009)CrossRefGoogle Scholar
  18. 18.
    F. Rivera-López, P. Babu, C. Basavapoornima, C.K. Jayasankar, V. Lavín, Efficient Nd3+ → Yb3+ energy transfer processes in high phonon energy phosphate glasses for 1.0 µm Yb3+ laser. J. Appl. Phys. 109, 123514 (2011)CrossRefGoogle Scholar
  19. 19.
    A.D. Pearson, S.P.S. Porto, Nonradiative energy exchange and laser oscillation in Yb3+, Nd3+ doped borate glass. Appl. Phys. Lett. 4, 202 (2004)CrossRefGoogle Scholar
  20. 20.
    R. Balda, J. Fernández, I. Iparraguirre, M. Al-Saleh, Spectroscopic study of Nd3+/Yb3+ in disordered potassium bismuth molybdate laser crystals. Opt. Mater. 28, 1247–1252 (2006)CrossRefGoogle Scholar
  21. 21.
    G.E. Peterson, A.D. Pearson, P.M. Bridenbaugh, Energy exchange from Nd3+ to Yb3+ in calibo glass. Appl. Phys. Lett. 36, 1962 (2004)Google Scholar
  22. 22.
    L.H. Ahrens, The use of ionization potentials Part 1. Ionic radii of the elements. Geochim. Cosmochim. Acta 2, 155–169 (1952)CrossRefGoogle Scholar
  23. 23.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A A32, 751–767 (1976)CrossRefGoogle Scholar
  24. 24.
    T.P. Xie, L. Zhang, Y. Guo, X.X. Wang, Y.J. Wang, Tuning of Bi3+-related excitation and emission positions through crystal field modulation in the perovskite-structured La2(Znx,Mg1–x)TiO6 (0 ≤ x ≤ 1):Bi3+ solid solution for white LEDs. Ceram. Int. (2018).  https://doi.org/10.1016/j.ceramint.2018.10.262 CrossRefGoogle Scholar
  25. 25.
    Z.G. Xia, C.G. Ma, M.S. Molokeev, Q.L. Liu, K. Rickert, K.R. Poeppelmeier, Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1–xMgx)(Al1–xSi1+x)O7:Eu2+ phosphor. J. Am. Chem. Soc. 137, 12494–12497 (2015)CrossRefGoogle Scholar
  26. 26.
    S. Kostić, Z. Lazarević, V. Radojević, Study of structural and optical properties of YAG and Nd:YAG single crystals. Mater. Res. Bull. 63, 80–87 (2015)CrossRefGoogle Scholar
  27. 27.
    L.J. Liu, H. Zhou, S.Q. Dong, Raman spectroscopy of sulfur structure in borosilicate waste glasses. At. Energy Sci. Technol. 43, 103–107 (2009)Google Scholar
  28. 28.
    G. Antoine, Infrared (2–12 µm) solid-state laser sources: a review. C. R. Phys. 8, 1100–1128 (2007)CrossRefGoogle Scholar
  29. 29.
    L.I. Ivleva, T.T. Basiev, I.S. Voronina, P.G. Zverev, V.V. Osiko, N.M. Polozkov, SrWO4:Nd3+ – new material for multifunctional lasers. Opt. Mater. 23, 439–442 (2003)CrossRefGoogle Scholar
  30. 30.
    C. Maunier, J.L. Doualan, R. Moncorgé, A. Speghini, M. Bettinelli, E. Cavalli, performance of Nd:LuVO4 a new infrared laser material that is suitable for diode pumping. J. Opt. Soc. Am. B 19, 1794–1800 (2002)CrossRefGoogle Scholar
  31. 31.
    W.B. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, Y. Usuki, Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser. Opt. Commun. 194, 401–407 (2001)CrossRefGoogle Scholar
  32. 32.
    S. Singh, D.C. Miller, J.R. Potopowicz, L.K. Shick, Emission cross section and fluorescence quenching of Nd3+ lanthanum pentaphosphate. J. Appl. Phys. 46, 1191 (1975)CrossRefGoogle Scholar
  33. 33.
    R. Balda, J. Fernandez, A. Mendioroz, J.L. Adams, B. Boulard, Temperature-dependent concentration quenching of Nd3+ fluorescence in fluoride glasses. J. Phys. 6, 913 (1994)Google Scholar
  34. 34.
    C. Koepke, K. Wisniewski, L. Sikorski, D. Piatkowski, K. Kowalska, M. Naftaly, Upconverted luminescence under 800 nm laser diode excitation in Nd3+-activated fluoroaluminate glass. Opt. Mater. 28, 129–136 (2006)CrossRefGoogle Scholar
  35. 35.
    A.A. Andrade, T. Catunda, R. Lebullenger, A.C. Hernandes, M.L. Baesso, Thermal lens measurements of fluorescence quantum efficiency in Nd3+-doped fluoride glasses. J. Non-Cryst. Solids 284, 255–260 (2001)CrossRefGoogle Scholar
  36. 36.
    D. Singh, V. Tanwar, S. Bhagwan, I. Singh, Recent advancements in luminescent materials and their potential applications, in Advanced Magnetic and Optical Materials (Wiley, 2016), pp. 317–352Google Scholar
  37. 37.
    D. Singh, V. Tanwar, A.P. Simantilleke, B. Mari, P.S. Kadyan, I. Singh, Rapid synthesis and enhancement in down conversion emission properties of BaAl2O4:Eu2+,RE3+ (RE3+ = Y, Pr) nanophosphors. J. Mater. Sci. Mater. Electron. 27, 2260–2266 (2016)CrossRefGoogle Scholar
  38. 38.
    Z.G. Xia, Q.L. Liu, Progress in discovery and structural design of color conversion phosphors for LEDs. Prog. Mater Sci. 84, 59–117 (2016)CrossRefGoogle Scholar
  39. 39.
    L. Wang, R.J. Xie, T. Suehiro, T. Takeda, N. Hirosaki, Down-conversion nitride materials for solid state lighting: recent advances and perspectives. Chem. Rev. 118, 1951–2009 (2018)CrossRefGoogle Scholar
  40. 40.
    F. Wang, X.G. Liu, Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 38, 976–989 (2009)CrossRefGoogle Scholar
  41. 41.
    F.W. Kang, J.J. He, T.Y. Sun, Z.Y. Bao, F. Wang, D.Y. Lei, Plasmonic dual-enhancement and precise color tuning of gold nanorod@SiO2 coupled core-shell-shell upconversion nanocrystals. Adv. Funct. Mater. 27(36), 1701842 (2017)CrossRefGoogle Scholar
  42. 42.
    Y. Liu, D. Tu, H. Zhu, X. Chen, Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 42, 6924–6958 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM)Yangtze Normal UniversityChongqingChina
  2. 2.Chongqing Academy of Metrology and Quality InspectionChongqingChina
  3. 3.Department of Environmental EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations