Dopant incorporation in ultrasmall quantum dots: a case study on the effect of dopant concentration on lattice and properties of SnO2 QDs

  • Harsimranjot KaurEmail author
  • H. S. Bhatti
  • Karamjit Singh


Although impurity doping of nanocrystals is essential in controlling their properties for various applications, but the doping mechanism of ultrasmall semiconductor QDs is not yet understood. In this study, the effect of concentration of Ni2+ ions on the lattice and properties of 1.4 nm SnO2 QDs, prepared via chemical-precipitation route has been studied in detail. The quantum dot lattice contracted at maximum Ni concentration of 10% due to the incorporation of Ni ions at the substitutional sites on the surface of SnO2 lattice, while it began to expand gradually as the Ni concentration was further decreased from 10 to 1%, due in part to the Ni ions located in the core of the host lattice, occupying interstitial sites between Sn and O atoms leading to the expansion of the lattice with the decrease in the amount of strain and dislocation density. High resolution transmission electron microscopy confirms the presence of such dislocations in pure and doped SnO2 QDs. Optical investigation shows that the Ni doping in SnO2 lattice leads to a blue shift in the absorption wavelength. The concentration quenching effect of the PL emission with Ni doping is explained in detail. An enhancement in the photocatalytic activity has been achieved with optimum Ni incorporation in SnO2. The work also successfully correlates photoluminescence quenching and enhanced photocatalytic activity with the defect production happened in SnO2 system on Ni doping.



This work was financially supported by Department of Science and Technology (DST) (Grant No. IF 150674), New Delhi. Authors are grateful to SAIF, Punjab University; Chandigarh, IIT Madras, SAI lab, Thapar University; Patiala, IIT Kanpur and IIT Mandi, H.P for having provided, the necessary laboratory facilities to carry out this work.


  1. 1.
    M. Nurunnabi, Z. Khatun, M. Nagiujjaman, D.G. Lee, Y.K. Lee, Surface coating of graphene quantum dots using mussel-inspired polydopamine for biomedical optical imaging. ACS Appl. Mater. Interfaces 5, 8246–8253 (2013)CrossRefGoogle Scholar
  2. 2.
    J. Tian, G. Cao, Semiconductor quantum dot-sensitized solar cells. Nano Rev. 4, 22578(1)-(8) (2013)Google Scholar
  3. 3.
    J. Brault, B. Damilano, B. Vinter, P. Vennegues, M. Leroux, A. Kahouli, J. Massies, AlGaN-based light emitting diodes using self-assembled GaN quantum dots for ultravoilet emission. Jpn. J. Appl. Phys. 52, 08JGo1(1)-(4) (2013)CrossRefGoogle Scholar
  4. 4.
    L. Jacak, P. Hawrylak, A. Wajs, Quantum Dots. (Springer, Berlin, 2013)Google Scholar
  5. 5.
    L.E. Brus, J. Chem. Phys. 80, 4403 (1984)CrossRefGoogle Scholar
  6. 6.
    M.Y. Gao, C. Lesser, S. Kirstein, H. Mohwald, A.L. Rogach, H. Weller, J. Appl. Phys. 87, 2297 (2000)CrossRefGoogle Scholar
  7. 7.
    B.O. Dabbopusi, M.G. Bawendi, Q. Onitsuka, M.F. Rubner, Appl. Phys. Lett. 66, 1316 (1995)CrossRefGoogle Scholar
  8. 8.
    N. Gaponik, I.L. Radtschenko, G.B. Sukhorokov, H. Weller, A.L. Rogach, Adv. Mater. 14, 879 (2002)CrossRefGoogle Scholar
  9. 9.
    K. Anandan, V. Rajendran, Supperlattice Microstruct. 85, 185 (2015)CrossRefGoogle Scholar
  10. 10.
    E.R. Leite, I.T. Weber, E. Longo, J.A. Varela, Adv. Mater. 12, 965–968 (2000)CrossRefGoogle Scholar
  11. 11.
    M. Stefik, M. Cornuz, N. Mathews, T. Hisatomi, S. Mhaisalkar, M. Gratzel, Nano Lett. 12, 5431–5435 (2012)CrossRefGoogle Scholar
  12. 12.
    Y.D. Ko, J.G. Kang, J.G. Park, S. Lee, D.W. Kim, Nanotechnology 20, 455701 (2009)CrossRefGoogle Scholar
  13. 13.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425 (2002)CrossRefGoogle Scholar
  14. 14.
    M.K. Sing, M.C. Mathpal, A. Agarwal, Optical properties of SnO2 quantum dots synthesized by laser ablationin liquid. Chem. Phys. Lett. 536, 87–91 (2012)CrossRefGoogle Scholar
  15. 15.
    M.H. Majles Ara, P. Boroojerdian, Z. Javadi, S. Zahedi, M. Marsbedian, Synthesis and non-linear optical characterization of SnO2 quantum dots. Optik 123, 2090–2094 (2012)CrossRefGoogle Scholar
  16. 16.
    X. Xu, J. Zhuang, X. Wang, SnO2 quantum dots and quantum wires: controllable synthesis, self assembled 2D architectures and gas-sensing properties. J. Am. Chem. Soc. 130, 12527–12535 (2008)CrossRefGoogle Scholar
  17. 17.
    S. Sharma, A.K. Srivastava, S. Chawla, Self assembled surface adjoined mesoscopic spheres of SnO2 quantum dots and there optical properties. Appl. Surf. Sci. 258, 8662–8666 (2012)CrossRefGoogle Scholar
  18. 18.
    A. Muthuvinayagam, N. Melikechii, P.D. Christy, P. Sagayaraj, Investigation of mild condition preparation and quantum confineent effects in semiconductor nanocrystals of SnO2. Phys. B 405, 1067–1070 (2016)CrossRefGoogle Scholar
  19. 19.
    S. Mosadegh Sedghi, Y. Mortazavi, A. Khodadad, Low temperature Co and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonocheical method. Sens. Actuators B 145, 7–12 (2010)CrossRefGoogle Scholar
  20. 20.
    C. Wu, F. Li, T. Guo, T.W. Kim, Carrier transport in volatile memory device with SnO2 quantum dots embedded in a Pdyimide layer. Jpn. J. Appl. Phys. 50, 09500(1)-(4) (2011)Google Scholar
  21. 21.
    K.T. Lee, C.H. Lin, S.Y. Lu, SnO2 quantum dots synthesized with a carrier solvent assisted interfacial reaction for band structure engineering of TiO2 photocatalysts. J. Phys. Chem. C 118, 14457–14463 (2014)CrossRefGoogle Scholar
  22. 22.
    H. Yufei, T. Pinggui, Z. Jiajun, F. Faying, L. Dianqing, Ultrafast response and recovery ethanol sensor based on SnO2 Quantum Dots. Mater. Lett. 165, 50–54 (2016)CrossRefGoogle Scholar
  23. 23.
    B. Venkataramana, G. Bhavana, C. Sharat, D. Arindam, D. Sandip, A.K. Tyagi, Electrochemical supercapacitor performance of SnO2 QDs. Electrochim. Acta 203, 230–237 (2016)CrossRefGoogle Scholar
  24. 24.
    Y. Juan, L.H. Xia, J.J. Tang, F. Chen, W. Li, X. Zhou, Three-dimensionsal porous carbon network encapsulated SnO2 QDs as anode materials for high-rate Lithium Ion batteries. Electrochim. Acta 217, 274–282 (2016)CrossRefGoogle Scholar
  25. 25.
    L. Zhu, M. Wang, T.K. Lam, c Zhang, H. Du, B. Li, Y. Yao, Fast microwave-aasisted synthesis of gas sensing SnO2 QDs with high sensitivity. Sens. Actuators B 236, 646–653 (2016)CrossRefGoogle Scholar
  26. 26.
    B. Babu, A.N. Kadam, R.N. S.S.N, R. Kumar, C. Byon, Enhanced visible light photocatalytic activity of Cu-doped SnO2 quantum dots by solution combustion synthesis. J. Alloys Compd. 703, 330–336 (2017)CrossRefGoogle Scholar
  27. 27.
    Z.L. Liu, J. Tang, C. Lv, J. Zhang, H. Zhao, Y. Wang, Palygorskite and SnO2-TiO2 for degradation of phenol. Appl. Clay. Sci. 51, 68–73 (2011)CrossRefGoogle Scholar
  28. 28.
    R. Candal, A. Martinez-de la Cruz, New visible-light active semiconductors, ed by A. Hernández-Ramírez, I. Medina-Ramírez, Photocatalytic Semiconductors (Springer, Cham, 2014)Google Scholar
  29. 29.
    A. Hajaji, K. Trabelsi, A. Atyaoui, M. Gaidi, L. Bousselmi, B. Bessais, A.E. Khakani, Photo-catalytic activity of Cr-doped TiO2 nanoparticles deposited on porous multicrystalline silicon films. Nanoscale Res. Lett. 9, 543 (2014)CrossRefGoogle Scholar
  30. 30.
    K.S. Siddhapara, D.V. Shah, Study of photocatalytic activity and properties of transition metal ions doped nanocrystalline TiO2 prepared by Sol-Gel method. Adv. Mater. Sci. Eng. (2014). CrossRefGoogle Scholar
  31. 31.
    H. Juan, Z. Haifeng, H. Fei, C. Guozhong, High performance of Mn-doped CdSe quantum dots sensitized solar cells based on vertical ZnO nanorod array. J. Power Source 325, 438–445 (2016)CrossRefGoogle Scholar
  32. 32.
    M.M. Rashad, A.A. Ismail, I. Osama, A. Kandil, Decomposition of Methylene Blue on transition metals doped SnO2 nanoparticles. Clean-Soil, Water, Air (Wiley) 42(5), 657–663 (2014)CrossRefGoogle Scholar
  33. 33.
    A. Sharma, M. Varshney, S. Kumar, R. Kumar, Magnetic properties of Fe and Ni doped SnO2 nanoparticles. Nanomater. Nanotechnol. 1, 29–33 (2011)CrossRefGoogle Scholar
  34. 34.
    V. Inderan, M.M. Aragat, S. Kumar, A. Haseeb, Z.T. Jiang, M. Altarawneh, H.L. Lee, Study of structural properties and defects of Ni-doped SnO2 nanorods as ethanol gas sensors. Nanotechnology 28, 265702 (2017)CrossRefGoogle Scholar
  35. 35.
    D. Varshney, K. Verma, Effect of stirring time on size and dielectric properties of SnO2 nanoparticles prepared by co-precipitation method. J. Mol. Struct. 1034, 216–222 (2013)CrossRefGoogle Scholar
  36. 36.
    S. Tazikeh, A. Akbari, E. Talebi, Synthesis and characterization of tin oxide nanoparticles via the co-precipitation method. Mater. Sci. Poland 32(1), 98–101 (2014)CrossRefGoogle Scholar
  37. 37.
    L. Vegard, Die Konstitution der Mischkristalle and die Raumfullung der Atome. Z. Phys. 5, 17 (1921)CrossRefGoogle Scholar
  38. 38.
    G.L. Pearson, Bardeen, J. Phys Rev. 75(5), 865 (1949)CrossRefGoogle Scholar
  39. 39.
    M. Arshad Jauid, M. Rafi, I. Ali, F. Hussain, M. Imraan, A. Nasir, Synthesis and study of structural properties of Sn doped ZnO nanoparticles. Mater. Sci. Poland 34(4), 741–746 (2016)CrossRefGoogle Scholar
  40. 40.
    D.L. Pavia, G.M. Lampman, G.S. Kriz, Introduction to Spectroscopy, 3rd edn. (Thomsan Learning, Singapore, 2001)Google Scholar
  41. 41.
    V. Kumar, K. Singh, A. Kumar, A. Thakur, Effect of solvent on crystallographic, morphological and optical properties of SnO2 nanoparticles. Mater. Res. Bull. 85, 202–208 (2017)CrossRefGoogle Scholar
  42. 42.
    S.H. Sun, G.W. Meng, G.X. Zhang, T. Gao, B. Geng, L.D. Zhang, J. Zuo, Chem. Phys. Lett. 376, 103 (2003)CrossRefGoogle Scholar
  43. 43.
    C. Mrabet, A. Boukhachem, M. Amlouk, T. Manoubi, Improvement of the optoelectronic properties of tin oxide transparent conductive thin films through Lanthanum doping. J. Alloys Compd. 666, 392–405 (2016)CrossRefGoogle Scholar
  44. 44.
    A. Thurber, K.M. Reddy, A. Punnoose, J. Appl. Phys. 105, 07E706 (2009)CrossRefGoogle Scholar
  45. 45.
    F.H. Aragon, J.A.H. Coaquira, P. Hidalgo, S.W. Dasilva, S.L.M. Brito, D. Gouvea, P.C. Morais, J. Raman Spectrosc. 42(5), 1081–1086 (2010)Google Scholar
  46. 46.
    W. Chen, D. Ghosh, S. Chen, J. Mater. Sci. 43, 5291 (2008)CrossRefGoogle Scholar
  47. 47.
    A. Dieguez, A.R. Rodriguez, A. Vila, J.R. Morante, J. Appl. Phys. 90, 1550 (2001)CrossRefGoogle Scholar
  48. 48.
    J. Kaur, J. Shah, R.K. Kotnala, K.C. Verma, Ceram. Int. 38, 5563 (2012)CrossRefGoogle Scholar
  49. 49.
    M. Dehbashi, M. Aliahmad, Experimental study of structural and optical band gap of nickel doped Tin oxide nanoparticles. Int. J. Phys. Sci. 7(37), 5415–5420 (2012)Google Scholar
  50. 50.
    N. Shanmugam, T. Sathya, G. Viruthagiri, C. Kalyanasundaram, R. Gobi, S. Ragupathy, Photocatalytic degradation of Brilliant Green dye using undoped and Zn doped SnO2 nanoparticles under sunlight irradiation. Appl. Surf. Sci. 360, 283–290 (2016)CrossRefGoogle Scholar
  51. 51.
    S. Jiang, L. Wang, W. Hao, W. Li, H. Xn, W. Wang, T. Wang, Visible-light photocatalytic activity of S-doped α-Bi2O3. J. Phys. Chem. C 119, 14094–14101 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Harsimranjot Kaur
    • 1
    Email author
  • H. S. Bhatti
    • 1
  • Karamjit Singh
    • 1
  1. 1.Department of PhysicsPunjabi UniversityPatialaIndia

Personalised recommendations