Advertisement

Influence of low energy (keV) negative Li ion implantation on properties of electrochemically induced scaffold-based growth of PbSe nanowires

  • Rashi Gupta
  • Rajesh Kumar
Article
  • 41 Downloads

Abstract

In the present work, PbSe nanowires were synthesized using restrictive template-based electrodeposition technique and implanted under vacuum with 200 keV negative Li ion at different fluences. The morphology of the nanowires was characterized by field emission scanning electron microscopy (FESEM). X-ray diffraction patterns confirmed the same crystal structure for pristine and ion implanted samples besides change in intensity of diffraction peaks were observed. Crystallite size was evaluated using modified Scherrer method and Williamson–Hall methods (UDM and USDM). Stress, strain, stacking fault, dislocation density and lattice parameters were evaluated for the pristine and ion implanted samples. UV–Vis spectroscopy results showed decrease in optical bandgap with increasing ion fluence. Photoluminescence spectra manifested decrease in emission peak with increasing ion fluence. The I–V graphs of the nanowires depicted space charge limiting current (SCLC) characteristics at higher voltage. An increase in current was observed with increase in ion fluence due to increase in free charge carriers.

Notes

Acknowledgements

One of the author’s Dr. Rajesh Kumar, acknowledge the FRGS Project No. GGSIPU/DRC/FRGS/2018/14 (1115) L and Inter University Accelerator Centre (IUAC), New Delhi, India project (Ref: IUAC/XIII.3A/59319) for carrying out of this work. We also thank Pelletron group, IUAC, New Delhi, for expert assistance in the operation of the accelerator. Author Rashi Gupta is thankful to the GGSIPU, New Delhi for providing financial assistance in the form of Indraprastha Research Fellowship (IPRF) vide letter no. GGSIPU/DRC/2018/1193. We would like to express great appreciation to Dr. R. P. Chauhan and Dr. S. K. Chakarvarti (Department of Physics, NIT Kurukshetra, Kurukshetra, India) for their valuable suggestions. We would also like to take the opportunity to thank all the reviewers for their effort and expertise in reviewing this paper that has helped in further improving the quality of the research paper.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    D.Y. Kim, K.R. Choudhury, J.W. Lee, D.W. Song, G. Sarasqueta, F. So, Nano Lett. 11, 2109 (2011)CrossRefGoogle Scholar
  2. 2.
    M.J. Gilbert, J.P. Bird, T. Sugaya, R. Akis, Phys. B Condens. Matter 314, 230 (2002)CrossRefGoogle Scholar
  3. 3.
    L. Yan, Y. Zhang, T. Zhang, Y. Feng, K. Zhu, D. Wang, T. Cui, J. Yin, Y. Wang, J. Zhao, W.W. Yu, Anal. Chem. 86, 11312 (2014)CrossRefGoogle Scholar
  4. 4.
    F.W. Wise, Acc. Chem. Res. 33, 773 (2000)CrossRefGoogle Scholar
  5. 5.
    J.E. Hujdic, D.K. Taggart, S.-C. Kung, E.J. Menke, J. Phys. Chem. Lett. 1, 1055 (2010)CrossRefGoogle Scholar
  6. 6.
    M.J. Bierman, Y.K.A. Lau, S. Jin, Nano Lett. 7, 2907 (2007)CrossRefGoogle Scholar
  7. 7.
    K.L. Hull, J.W. Grebinski, T.H. Kosel, M. Kuno, Chem. Mater. 17, 4416 (2005)CrossRefGoogle Scholar
  8. 8.
    D.V. Talapin, H. Yu, E.V. Shevchenko, A. Lobo, C.B. Murray, J. Phys. Chem. C 111, 14049 (2007)CrossRefGoogle Scholar
  9. 9.
    H.Z. Wu, X.M. Fang, R. Salas, D. McAlister, P.J. McCann, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 17, 1263 (1999)CrossRefGoogle Scholar
  10. 10.
    W. Zhao, Scr. Mater. 50, 1169 (2004)CrossRefGoogle Scholar
  11. 11.
    D.K. Ivanou, E.A. Streltsov, A.K. Fedotov, A.V. Mazanik, D. Fink, A. Petrov, Thin Solid Films 490, 154 (2005)CrossRefGoogle Scholar
  12. 12.
    H.H. Solak, Y. Ekinci, P. Käser, S. Park, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25, 91 (2007)CrossRefGoogle Scholar
  13. 13.
    J.C. Hulteen, C.R. Martin, J. Mater. Chem. 7, 1075 (1997)CrossRefGoogle Scholar
  14. 14.
    A. Huczko, Appl. Phys. A 70, 365–376 (2000)CrossRefGoogle Scholar
  15. 15.
    C. Schönenberger, B.M.I. van der Zande, L.G.J. Fokkink, M. Henny, C. Schmid, M. Krüger, A. Bachtold, R. Huber, H. Birk, U. Staufer, J. Phys. Chem. B 101, 5497 (1997)CrossRefGoogle Scholar
  16. 16.
    M. Rani, R. Kumar, R. Kumar, R. Singh, S.K. Chakarvarti, Chalcogenide Lett. 10, 99 (2013)Google Scholar
  17. 17.
    A. Milchev, S. Stoyanov, R. Kaischev, Thin Solid Films 22, 255 (1974)CrossRefGoogle Scholar
  18. 18.
    M. Alexander, Electrocrystallization: Fundamentals of Nucleation and Growth (Springer, Berlin, 2002)Google Scholar
  19. 19.
    B. Scharifker, G. Hills, Electrochim. Acta 28, 879 (1983)CrossRefGoogle Scholar
  20. 20.
    K. Takahashi, S.J. Limmer, Y. Wang, G. Cao, J. Phys. Chem. B 108, 9795 (2004)CrossRefGoogle Scholar
  21. 21.
    M.P. Zach, K. Inazu, K.H. Ng, J.C. Hemminger, R.M. Penner, Chem. Mater. 14, 3206 (2002)CrossRefGoogle Scholar
  22. 22.
    Y.Y. Chen, B.Y. Yu, J.H. Wang, R.E. Cochran, J.J. Shyue, Inorg. Chem. 48, 681 (2009)CrossRefGoogle Scholar
  23. 23.
    Y. Zhou, H. Li, J. Mater. Sci. 7, 5261 (2002)CrossRefGoogle Scholar
  24. 24.
    E.A. Streltsov, N.P. Osipovich, L.S. Ivashkevich, A.S. Lyakhov, Electrochim. Acta 44, 407 (1998)CrossRefGoogle Scholar
  25. 25.
    S. Ishii, E.S. Sadki, S. Ooi, Y. Ochiai, K. Hirata, Phys. C Supercond. 426, 268 (2005)CrossRefGoogle Scholar
  26. 26.
    W.Q. Li, X.H. Xiao, A.L. Stepanov, Z.G. Dai, W. Wu, G.X. Cai, F. Ren, C.Z. Jiang, Nanoscale Res. Lett. 8, 175 (2013)CrossRefGoogle Scholar
  27. 27.
    P.R. Gardner, Mater. Desi. 8, 210 (1987)CrossRefGoogle Scholar
  28. 28.
    T. Ahlgren, K. Väkeväinen, J. Räisänen, E. Rauhala, J. Keinonen, Appl. Surf. Sci. 4332, 1 (1995)Google Scholar
  29. 29.
    T. Kamins, R.S. Williams, T. Hesjedal, J. Harris, Phys. E Low-Dimens. Syst. Nanostruct. 13, 995 (2002)CrossRefGoogle Scholar
  30. 30.
    S. Dhara, A. Datta, C.T. Wu, Z.H. Lan, K.H. Chen, Y.L. Wang, L.C. Chen, C.W. Hsu, H.M. Lin, C.C. Chen, Appl. Phys. Lett. 82, 451 (2003)CrossRefGoogle Scholar
  31. 31.
    P.D. Kanungo, R. Kögler, K. Nguyen-Duc, N. Zakharov, P. Werner, U. Gösele, Nanotechnology 20, 165706 (2009)CrossRefGoogle Scholar
  32. 32.
    C. Zeiner, A. Lugstein, T. Burchhart, P. Pongratz, J.G. Connell, L.J. Lauhon, E. Bertagnolli, Nano Lett. 11, 3108 (2011)CrossRefGoogle Scholar
  33. 33.
    S. Müller, M. Zhou, Q. Li, C. Ronning, Nanotechnology 20, 135704 (2009)CrossRefGoogle Scholar
  34. 34.
    J. Ishikawa, H. Tsuji, Y. Toyota, Y. Gotoh, K. Matsuda, M. Tanjyo, S. Sakai, Nucl. Instrum. Methods Phys. Res. Sect. B 96, 7 (1995)CrossRefGoogle Scholar
  35. 35.
    H. Tsuji, J. Ishikawa, S. Ikeda, Y. Gotoh, Nucl. Instrum. Methods Phys. Res. Sect. B 127/128, 278 (1997)CrossRefGoogle Scholar
  36. 36.
    H.S.W. Massey, Negative Ions, 3rd edn. (Cambridge University Press, Cambridge, 1976)Google Scholar
  37. 37.
    H. Tsuji, S. Kido, H. Sasaki, Y. Gotoh, J. Ishikawa, Rev. Sci. Instrum. 71, 804 (2000)CrossRefGoogle Scholar
  38. 38.
    A.J.T. Holmes, G. Proudfoot, Nucl. Instrum. Methods Phys. Res. Sect. B 55, 323 (1991)CrossRefGoogle Scholar
  39. 39.
    J.F. Ziegler, J.P. Biersack, M.D. Ziegler, “SRIM—The Stopping and Range of Ions in Matter”, Ion Implantation Press (2008). Available at: http://www.lulu.com/content/1524197
  40. 40.
    M. Nedelcu, M. Sima, T. Visan, T. Pascu, in Proc. ICT2001. 20 Int. Conf. Thermoelectr. IEEE, 327–330 (2001)Google Scholar
  41. 41.
    H. Saloniemi, T. Kanniainen, M. Ritala, M. Leskelä, R. Lappalainen, J. Mater. Chem. 8, 651 (1998)CrossRefGoogle Scholar
  42. 42.
    W. Han, L.Y. Cao, J.F. Huang, J.P. Wu, Mater. Technol. 24, 217 (2009)CrossRefGoogle Scholar
  43. 43.
    E.A. Streltsov, N.P. Osipovich, L.S. Ivashkevich, A.S. Lyakhov, V.V. Sviridov, Electrochim. Acta 43, 869 (1998)CrossRefGoogle Scholar
  44. 44.
    H. Saloniemi, T. Kanniainen, M. Ritala, M. Leskelä, Thin Solid Films 326, 78 (1998)CrossRefGoogle Scholar
  45. 45.
    S.G.J. Bratsch, Phys. Chem. Ref. Data 18, 1 (1989)CrossRefGoogle Scholar
  46. 46.
    L. Chen, H. Hu, Y. Li, G. Chen, S. Yu, G. Wu, Chem. Lett. 35, 170 (2006)CrossRefGoogle Scholar
  47. 47.
    R. Gupta, R.P. Chauhan, S.K. Chakarvarti, M.K. Jaiswal, D. Ghoshal, S. Basu, S. Suresh, S.F. Bartolucci, N. Koratkar, R. Kumar, J. Mater. Sci. Mater. Electron. 29, 19013 (2018)CrossRefGoogle Scholar
  48. 48.
    N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, B. Kumar, Ceram. Int. 44, 8582 (2018)CrossRefGoogle Scholar
  49. 49.
    S. Goel, N. Sinha, H. Yadav, B. Kumar, Phys. E Low-Dimens. Syst. Nanostruct. (2018).  https://doi.org/10.1016/j.physe.2018.08.014 CrossRefGoogle Scholar
  50. 50.
    A. Gaber, M.A.A. Rahim, A.Y.A. Latief, M.N.A. Salam, Int. J. Electrochem. Sci. 9, 81–95 (2014)Google Scholar
  51. 51.
    A.T. D’Agostino, Anal. Chim. Acta 262, 269 (1992)CrossRefGoogle Scholar
  52. 52.
    A. Monshi, M.R. Foroughi, M.R. Monshi, World J. Nano Sci. Eng. 02, 154 (2012)CrossRefGoogle Scholar
  53. 53.
    K.H. Harbbi, S.S. Jahil, Adv. Phys. Theor. Appl. 65, 6 (2017)Google Scholar
  54. 54.
    R. Kumar, P. Singh, Appl. Surf. Sci. 337, 19 (2015)CrossRefGoogle Scholar
  55. 55.
    S. Asad Ali, R. Kumar, F. Singh, P.K. Kulriya, R. Prasad, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1813 (2010)CrossRefGoogle Scholar
  56. 56.
    V. Kumar, M.K. Jaiswal, R. Gupta, J. Ram, I. Sulania, S. Ojha, X. Sun, N. Koratkar, R. Kumar, J. Mater. Sci. Mater. Electron. 29, 13328 (2018)CrossRefGoogle Scholar
  57. 57.
    S. Goel, N. Sinha, H. Yadav, A.J. Joseph, B. Kumar, Phys. E Low-Dimens. Syst. Nanostruct. 91, 72 (2017)CrossRefGoogle Scholar
  58. 58.
    W. Chen, H. Cheng, C. Yu, J. Alloys Compd. 689, 857 (2016)CrossRefGoogle Scholar
  59. 59.
    H.H. Landolt, R. Börnstein, Numerical Data and Functional Relationships in Science and Technology, III/29/a. Second and Higher Order Elastic Constants (Springer-Verlag, Berlin, 1992)Google Scholar
  60. 60.
    J.B. Wachtman, M.L. Wheat, S. Marzullo, J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 67A, 193 (1963)CrossRefGoogle Scholar
  61. 61.
    S. Hirsekorn, Textures Microstruct. 12, 1 (1990)CrossRefGoogle Scholar
  62. 62.
    H.B. Huntington, Solid State Physics Advances in Research and Applications (Academic Press, New York, 1958), pp. 213–351Google Scholar
  63. 63.
    N. Boukhris, H. Meradji, S.A. Korba, S. Drablia, S. Ghemid, F. El Haj Hassan, Bull. Mater. Sci. 37, 1159 (2014)CrossRefGoogle Scholar
  64. 64.
    S. Goel, N. Sinha, H. Yadav, S. Godara, A.J. Joseph, B. Kumar, Mater. Chem. Phys. 202, 56 (2017)CrossRefGoogle Scholar
  65. 65.
    R. Gupta, R.P. Chauhan, S.K. Chakarvarti, R. Kumar, Ionics 24, 1–12 (2018)CrossRefGoogle Scholar
  66. 66.
    R. Gupta, R. Kumar, R.P. Chauhan, S.K. Chakarvarti, Vacuum 148, 239 (2018)CrossRefGoogle Scholar
  67. 67.
    J. Elias, R.T. Zaera, C.L. Clément, Thin Solid Films 515, 8553 (2007)CrossRefGoogle Scholar
  68. 68.
    M. Kumar, A. Kumar, A.C. Abhyankar, ACS Appl. Mater. Interfaces 7, 3571 (2015)CrossRefGoogle Scholar
  69. 69.
    R.P.I. Adler, H.M. Otte, C.N.J. Wagner, Metall. Trans. 1, 2375 (1970)Google Scholar
  70. 70.
    S. Anwar, S. Anwar, B.K. Mishra, Mater. Sci. Semicond. Process. 40, 910 (2015)CrossRefGoogle Scholar
  71. 71.
    R. Sethi, P. Kumar, S.A. Khan, A. Aziz, A.M. Siddiqui, AIP Conf. Proc. 1742, 030016 (2016)CrossRefGoogle Scholar
  72. 72.
    P.R. Rios, F. Siciliano Jr., H.R.Z. Sandim, R.L. Plaut, A.F. Padilha, Mater. Res. 8, 225 (2005)CrossRefGoogle Scholar
  73. 73.
    B. Ahmad, R. Meena, P. Kumar, R. Ahmed, M. Hussain, S.M. Tantary, K. Asokan, RSC Adv. 7, 50648 (2017)CrossRefGoogle Scholar
  74. 74.
    A.H. Ramezani, M.R. Hantehzadeh, M. Ghoranneviss, E. Darabi, Bull. Mater. Sci. 39, 633 (2016)CrossRefGoogle Scholar
  75. 75.
    L.L. Abels, S. Sundaram, R.L. Schmidt, J. Comas, Appl. Surf. Sci. 9, 2 (1981)CrossRefGoogle Scholar
  76. 76.
    A. Compaan, Solid State Commun. 16, 293 (1975)CrossRefGoogle Scholar
  77. 77.
    P.F. Williams, S.P.S. Porto, Phys. Rev. B 8, 1782 (1973)CrossRefGoogle Scholar
  78. 78.
    R. Loudon, Proc. Phys. Soc. 84, 379 (1964)CrossRefGoogle Scholar
  79. 79.
    K.R. Murali, P. Ramanathan, Chalcogenide Lett. 6, 91 (2009)Google Scholar
  80. 80.
    F.S. Manciu, Y. Sahoo, F. Carreto, P.N. Prasad, J. Raman Spectrosc. 39, 1135 (2008)CrossRefGoogle Scholar
  81. 81.
    V. Arivazhagan, M.Manonmani Parvathi, S. Rajesh, Phys. E Low-Dimens. Syst. Nanostruct. 53, 120 (2013)CrossRefGoogle Scholar
  82. 82.
    J. Chen, W.Z. Shen, J. Appl. Phys. 99, 013513 (2006)CrossRefGoogle Scholar
  83. 83.
    E.P. Pokatilov, S.N. Klimin, V.M. Fomin, J.T. Devreese, F.W. Wise, Phys. Rev. B 65, 075316 (2002)CrossRefGoogle Scholar
  84. 84.
    S.V. Ovsyannikov, Y.S. Ponosov, V.V. Shchennikov, V.E. Mogilenskikh, Phys. Status Solidi 1, 3110 (2004)CrossRefGoogle Scholar
  85. 85.
    T.D. Krauss, F.W. Wise, Phys. Rev. B 55, 9860 (1997)CrossRefGoogle Scholar
  86. 86.
    K. Li, X. Meng, X. Liang, H. Wang, H. Yan, J. Solid State Electrochem. 10, 48 (2006)CrossRefGoogle Scholar
  87. 87.
    G.M. Shashidhar, G.V. Pravin, B. Manohar, RSC Adv. 6, 1 (2016)CrossRefGoogle Scholar
  88. 88.
    S. Anwar, M. Pattanaik, B.K. Mishra, S. Anwar, Mater. Sci. Semicond. Process. 34, 45 (2015)CrossRefGoogle Scholar
  89. 89.
    A. Mondal, S. Pal, A. Sarkar, T.S. Bhattacharya, A. Das, N. Gogurla, S.K. Ray, P. Kumar, D. Kanjilal, K.D. Devi, A. Singha, S. Chattopadhyay, D. Jana, Mater. Sci. Semicond. Process. 80, 111 (2018)CrossRefGoogle Scholar
  90. 90.
    A. Kumar, J.B.M. Krishna, D. Das, S. Keshri, Appl. Surf. Sci. 258, 2237 (2012)CrossRefGoogle Scholar
  91. 91.
    P. Han, G. Bester, Phys. Rev. B 85, 041306 (2012)CrossRefGoogle Scholar
  92. 92.
    R. Gupta, S. Sen, D.M. Phase, D.K. Avasthi, A. Gupta, Appl. Surf. Sci. 440, 403 (2018)CrossRefGoogle Scholar
  93. 93.
    N.M. Ravindra, P. Ganapathy, J. Choi, Infrared Phys. Technol. 50, 21 (2007)CrossRefGoogle Scholar
  94. 94.
    V. Kumar, J.K. Singh, Indian J. Pure Appl. Phys. 48, 571 (2010)Google Scholar
  95. 95.
    W. Monch, J. Phys. C: Solid St. Phys. 13, 2979 (1980)CrossRefGoogle Scholar
  96. 96.
    R.R. Reddy, K. Rama Gopal, K. Narasimhulu, L.S.S. Reddy, K.R. Kumar, C.V.K. Reddy, S.N. Ahmed, Opt. Mater. (Amst). 31, 209 (2008)CrossRefGoogle Scholar
  97. 97.
    X. Wang, K. Chen, M. Zhao, D.D. Nolte, Opt. Express 18, 24859 (2010)CrossRefGoogle Scholar
  98. 98.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)Google Scholar
  99. 99.
    M. Öztaş, M. Bedir, Mater. Lett. 61, 343 (2007)CrossRefGoogle Scholar
  100. 100.
    N. Xu, B.H. Boo, Semicond. Sci. Technol. 18, 300 (2003)CrossRefGoogle Scholar
  101. 101.
    P. Sharma, M. Vashistha, I.P. Jain, Opt. Mater. (Amst). 27, 395 (2004)CrossRefGoogle Scholar
  102. 102.
    S. Sorieul, J.M. Costantini, L. Gosmain, G. Calas, J.J. Grob, L. Thomé, J. Phys. Condens. Matter 18, 8493 (2006)CrossRefGoogle Scholar
  103. 103.
    K.L. Narayanan, K.P. Vijayakumar, K.G.M. Nair, B. Sundarakkannan, G.V. Narasimha Rao, R. Kesavamoorthy, Nucl. Instrum. Methods Phys. Res. B 132, 61 (1997)CrossRefGoogle Scholar
  104. 104.
    G. Bakiyaraj, J.B.M. Krishna, G.S. Taki, R. Dhanasekaran, Asian J. Chem. 25, 18 (2013)Google Scholar
  105. 105.
    S. Saha, S. Nagar, S.K. Gupta, S. Chakrabarti, Proc. SPIE—Int. Soc. Opt. Eng. (2015)  https://doi.org/10.1117/12.2079139 CrossRefGoogle Scholar
  106. 106.
    V. Chauhan, T. Gupta, N. Koratkar, R. Kumar, Mater. Sci. Semicond. Process. 88, 262 (2018)CrossRefGoogle Scholar
  107. 107.
    A. Lipovskii, E. Kolobkova, V. Petrikov et al., Appl. Phys. Lett. 71, 3406 (1997)CrossRefGoogle Scholar
  108. 108.
    A. Sawaby, Z.S. Elmandouh, S.A. Nasser, M.E. Fathi, J. Appl. Sci. Res.4, 311 (2008)Google Scholar
  109. 109.
    Z. Zhang, K. Yao, Y. Liu, C. Jin, X. Liang, Q. Chen, L.-M. Peng, Adv. Funct. Mater. 17, 2478 (2007)CrossRefGoogle Scholar
  110. 110.
    J.A. Röhr, D. Moia, S.A. Haque, T. Kirchartz, J. Nelson, J. Phys. Condens. Matter 30, 105901 (2018)CrossRefGoogle Scholar
  111. 111.
    A.A. Talin, F. Léonard, B.S. Swartzentruber, X. Wang, S.D. Hersee, Phys. Rev. Lett. 101, 076802 (2008)CrossRefGoogle Scholar
  112. 112.
    Y. Gu, L.J. Lauhon, Appl. Phys. Lett. 89, 143102 (2006)CrossRefGoogle Scholar
  113. 113.
    F. Léonard, J. Tersoff, Phys. Rev. Lett. 83, 5174 (1999)CrossRefGoogle Scholar
  114. 114.
    C. Narula, R.P. Chauhan, J. Alloys Compd. 684, 261 (2016)CrossRefGoogle Scholar
  115. 115.
    R.P. Chauhan, C. Narula, Mater. Res. Bull. 108, 242 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University School of Basic and Applied SciencesGuru Gobind Singh Indraprastha UniversityNew DelhiIndia

Personalised recommendations