Growth of pure and BFO doped KCl crystals by Czochralski technique and fabrication of microstrip patch antenna for GHz applications

  • Sonu Kumar
  • Nidhi Sinha
  • Sumit Bhukkal
  • Binay KumarEmail author


Large sized pure and 0.1 mol% BiFeO3 (BFO) doped KCl single crystals were grown by Czochralski technique. Structural parameters were confirmed by powder XRD and single crystal XRD. EDX analysis was used to determine the elemental composition of BFO and KCl crystal. Photoluminescence confirmed that BFO acts as defect quenching agent for KCl single crystal which improved its optical transparency. Doping of BFO in KCl single crystal increased its hardness as measured by a Vicker’s microhardness test. The effect of BFO on dielectric constant and dielectric loss of KCl crystal, at various temperature and frequencies was studied. The low dielectric constant viz. 4.5 and 5.8 for pure and BFO doped KCl was helpful in designing and fabricating patch antenna in GHz frequency. As a result of BFO doping, the resonant frequency of microstrip patch antenna can be tuned at 5.40 GHz from 6.01 GHz for the KCl single crystal.



The authors are grateful to DST (EMR/2015/000385) and DRDO (ARMREB/MAA/2015/163) for financial support. Sonu Kumar is thankful to UGC for Senior Research Fellowship. Sumit Bhukkal expresses his gratitude to UGC for Junior Research Fellowship. Dr. Nidhi Sinha is thankful to the Principal, SGTB Khalsa College for encouragement for research work.


  1. 1.
    P. Bhattacharya, M. Groza, Y. Cui, D. Caudel, T. Wrenn, A. Nwankwo, A. Burger, G. Slack, A.G. Ostrogorsky, J. Cryst. Growth 312, 1228 (2010)CrossRefGoogle Scholar
  2. 2.
    Y. Tang, H. Luo, Infrared Phys. Technol. 52, 180 (2009)CrossRefGoogle Scholar
  3. 3.
    K.S. Shah, P. Bennett, L.P. May, M.M. Misra, M.M. Mosesh, Nucl. Instrum. Methods Phys. Res. A 380, 215 (1996)CrossRefGoogle Scholar
  4. 4.
    G. Atanassov, D. Popov, P.F. Gu, Thin Solid Films 261, 256 (1995)Google Scholar
  5. 5.
    H. Yadav, N. Sinha, B. Kumar, CrystEngComm 16, 10700 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Bangaru, K. Saradha, G. Muralidharan, Luminescence 31, 649 (2016)CrossRefGoogle Scholar
  7. 7.
    G.A. Atanassov, V.A. Ivanov, E.N. Kotlikov, D.N. Popov, B.F. Shifrin, Thin Solid Films 213, 251 (1992)CrossRefGoogle Scholar
  8. 8.
    S. Polosan, T. Tsuboi, E. Apostol, V. Topa, Opt. Mater. 30, 95 (2007)CrossRefGoogle Scholar
  9. 9.
    L. Bouhdjer, S. Addala, A. Chala, O. Halimi, B. Boudine, M. Sebais, J. Semicond. 34, 043001 (2013)CrossRefGoogle Scholar
  10. 10.
    M.C. Marco, D.E. Lucas et al., Phys. Status Solidi (b) 172, 719 (1992)CrossRefGoogle Scholar
  11. 11.
    J. Joseph, V. Mathew, K.E. Abraham, J. Phys. 35, 198 (2008)Google Scholar
  12. 12.
    K. Fussgaen, Phys. Status Solidi 34, 157 (1969)CrossRefGoogle Scholar
  13. 13.
    S. Kara, L. Bouhdjer, M. Sebais, O. Halimi, B. Boudine, Optik 127, 9264 (2016)CrossRefGoogle Scholar
  14. 14.
    D.J. Daniel, P. Ramasamy, U. Madhusoodanan, G. Bhagavannarayana, J. Cryst. Growth 353, 95 (2012)CrossRefGoogle Scholar
  15. 15.
    F.J. Lopez et al., Phys. Rev. B 22, 6428 (1980)CrossRefGoogle Scholar
  16. 16.
    C. Zaldo et al., J. Phys. C 20, 849 (1987)CrossRefGoogle Scholar
  17. 17.
    S. Bangaru, G. Muralidharan, Physica B 407, 2185 (2012)CrossRefGoogle Scholar
  18. 18.
    S. Bangaru, Physica B 406, 159 (2011)CrossRefGoogle Scholar
  19. 19.
    G. Saibabu, A.R. Reddy, D. Srikanth, Bull. Mater. Sci. 27, 459 (2004)CrossRefGoogle Scholar
  20. 20.
    H.I.L. Kang, J.T. Kim, J.T. Song, Curr. Appl. Phys. 10, 642 (2010)CrossRefGoogle Scholar
  21. 21.
    T.J. Park et al., Nano Lett. 7, 766 (2007)CrossRefGoogle Scholar
  22. 22.
    M. Fiebig, J. Phys. D 38, R123 (2005)CrossRefGoogle Scholar
  23. 23.
    S. Godara, N. Sinha, G. Ray, B. Kumar, J. Asian Ceram. Soc. 2, 416 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Godara, B. Kumar, Ceram. Int. 41, 6912 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Fatima, S.I. Ali, M.Z. Iqbal, S. Rizwan, RSC Adv. 7, 35928 (2017)CrossRefGoogle Scholar
  26. 26.
    S. Bhukkal, N. Sinha, H. Yadav, S. Sahil, B. Singh, I. Bdikin, B. Kumar, Vacuum 154, 90 (2018)CrossRefGoogle Scholar
  27. 27.
    N. Sinha et al., Cryst. Res. Technol. 44, 167 (2009)CrossRefGoogle Scholar
  28. 28.
    B.G. Dick Jr., A.W. Overhauszr, Phys. Rev. 112, 90 (1958)CrossRefGoogle Scholar
  29. 29.
    H.I. Kang et al., Curr. Appl. Phys. 10, 642 (2010)CrossRefGoogle Scholar
  30. 30.
    D.L. Dexter et al., Phys. Rev. 100, 603 (1955)CrossRefGoogle Scholar
  31. 31.
    C. Catlow, J. Corish, K. Diller, P. Jacobs, M. Norgett, J. Phys. Colloq. 37, C7–C253 (1976)Google Scholar
  32. 32.
    F. Seitz, Rev. Mod. Phys. 26, 7 (1954)CrossRefGoogle Scholar
  33. 33.
    F. Zehani, MSAIJ 13, 402 (2015)Google Scholar
  34. 34.
    K. Sangwal, Cryst. Res. Technol. 44, 1019 (2009)CrossRefGoogle Scholar
  35. 35.
    N. Kanagathara, M.K. Marchewka, S. Gunaseka ram, G. Anbalagan, Acta Phys. Pol. A 126, 827 (2014)CrossRefGoogle Scholar
  36. 36.
    M.H. Tavakoli, T.A. Abasi, E.H. Ali, Cryst. Res. Technol. 48, 130 (2013)CrossRefGoogle Scholar
  37. 37.
    H.I. Kang, J.T. Kim, J.T. Song, Curr. Appl. Phys. 10, 642 (2010)CrossRefGoogle Scholar
  38. 38.
    A. Arora, A. Khemchandani, Y. Rawat, S. Singhai, G. Chaitanya, Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng. 3, 32 (2015)Google Scholar
  39. 39.
    S.V. Shynu, M.J.R. Ons, P. McEvoy, IEEE Trans. Antennas Propag. 57, 12 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Crystal Lab, Department of Physics & AstrophysicsUniversity of DelhiNew DelhiIndia
  2. 2.Department of Electronics, SGTB Khalsa CollegeUniversity of DelhiNew DelhiIndia

Personalised recommendations