Functional properties of LaxCe1−xO2−δ nanocrystals and their bulk ceramics

  • Saurabh Srivastava
  • Kundan Kumar
  • Kushal Singh
  • Prasanta Kumar Ojha
  • Anirban ChowdhuryEmail author


Structure–property correlations were investigated for LaxCe1−xO2−δ (x = 0.05, 0.15) system (for both nanoparticles and ceramic). The nanoparticles were synthesized by the co-precipitation route and characterized for their structural, catalytic and visible light driven photocatalytic properties. Synthesised LaxCe1−xO2−δ nanopowders depicted phase purity with excellent compositional control as confirmed by various structural characterisation tools. The 15% La3+-doped ceria nanoparticles portrayed superior photocatalytic properties; complete degradation (99%) of the methylene blue dye was observed within 60 min of visible light irradiation under an alkaline medium. High density (> 96%) of the ceramics (sintered at 1580 °C for 2 h) confirmed promising sinterability of the synthesised powders. The ionic conductivities of the LaxCe1−xO2−δ ceramics increased with temperature and frequency owing to enhanced oxygen vacancies in the ceria matrix as a result of doping (of La3+-ions); a maximum conductivity of ~ 8.4 × 10−2 S cm−1 was obtained at 900 °C for the 15% La3+-doped ceria ceramics at 1 MHz frequency.



Saurabh Srivastava was thankful to Indian Institute of Technology Patna, India, for the financial assistance. The authors gratefully acknowledge the financial support from DST-SERB, Government of India, Grant No. SB/FTP/ETA-0160/2014.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest to this work.

Supplementary material

10854_2018_481_MOESM1_ESM.docx (354 kb)
Supplementary material 1 (DOCX 353 KB)


  1. 1.
    A. Trovarelli, C. de Leitenburg, M. Boaro, G. Dolcetti, The utilization of ceria in industrial catalysis. Catal. Today 50, 353–367 (1999)CrossRefGoogle Scholar
  2. 2.
    H. Inaba, H. Tagawa, Ceria-based solid electrolytes. Solid State Ion. 83, 1–16 (1996)CrossRefGoogle Scholar
  3. 3.
    J. Lahaye, S. Boehm, P. Chambrion, P. Ehrburger, Influence of cerium oxide on the formation and oxidation of soot. Combust. Flame 104, 199–207 (1996)CrossRefGoogle Scholar
  4. 4.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27, 11691–11697 (2016)Google Scholar
  5. 5.
    B. Dong, L. Li, Z. Dong, R. Xu, Y. Wu, Fabrication of CeO2 nanorods for enhanced solar photocatalysts. Int. J. Hydrog. Energy 43, 5275–5282 (2018)CrossRefGoogle Scholar
  6. 6.
    A. Trovarelli, M. Boaro, E. Rocchini, C. de Leitenburg, G. Dolcetti, Some recent developments in the characterization of ceria-based catalysts. J. Alloys Compd. 323, 584–591 (2001)CrossRefGoogle Scholar
  7. 7.
    S.J. Hong, A.V. Virkar, Lattice parameters and densities of rare-earth oxide doped ceria electrolytes. J. Am. Ceram. Soc. 78, 433–439 (1995)CrossRefGoogle Scholar
  8. 8.
    B. Reddy, M. Katta, L. Thrimurthulu G, Novel nanocrystalline Ce1−xLaxO2−δ (x = 0.2) solid solutions: structural characteristics and catalytic performance. Chem. Mater. 22, 467–475 (2009)CrossRefGoogle Scholar
  9. 9.
    E. Andrievskaya, O. Kornienko, A. Sameljuk, A. Sayir, Phase relation studies in the CeO2–La2O3 system at 1100–1500 °C. J. Eur. Ceram. Soc. 31, 1277–1283 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Guo, J. Lu, Y. Wu, Y. Wang, M. Luo, UV and visible Raman studies of oxygen vacancies in rare-earth-doped ceria. Langmuir 27, 3872–3877 (2011)CrossRefGoogle Scholar
  11. 11.
    K. Higashi, K. Sonoda, H. Ono, S. Sameshima, Y. Hirata, Synthesis and sintering of rare-earth-doped ceria powder by the oxalate coprecipitation method. J. Mater. Res. 14, 957–967 (1999)CrossRefGoogle Scholar
  12. 12.
    J.S. Bae, W.K. Choo, C.H. Lee, The crystal structure of ionic conductor LaxCe1−xO2−x/2. J. Eur. Ceram. Soc. 24, 1291–1294 (2004)CrossRefGoogle Scholar
  13. 13.
    K. Singh, K. Kumar, S. Srivastava, A. Chowdhury, Effect of rare-earth doping in CeO2 matrix: correlations with structure, catalytic and visible light photocatalytic properties. Ceram. Int. 43, 17041–17047 (2017)Google Scholar
  14. 14.
    K. Singh, R. Kumar, A. Chowdhury, Synergistic effects of ultrasonication and ethanol washing in controlling the stoichiometry, phase-purity and morphology of rare-earth doped ceria nanoparticles. Ultrason. Sonochem. 36, 182–190 (2017)CrossRefGoogle Scholar
  15. 15.
    K. Kumar, S. Srivastava, A. Chowdhury, La3+-doped CeO2 system: negating the myths with a tailor-made ceramic. Scr. Mater. 157, 138–141 (2018)CrossRefGoogle Scholar
  16. 16.
    A. Bueno-López, K. Krishna, M. Makkee, J. Moulijn, Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2. J. Catal. 230, 237–248 (2005)CrossRefGoogle Scholar
  17. 17.
    S. Dikmen, P. Shuk, M. Greenblatt, Hydrothermal synthesis and properties of Ce1−xLaxO2−δ solid solutions. Solid State Ion. 126, 89–95 (1999)CrossRefGoogle Scholar
  18. 18.
    T. Mori, J. Drennan, J.-H. Lee, J.-G. Li, T. Ikegami, Oxide ionic conductivity and microstructures of Sm-or La-doped CeO2-based systems. Solid State Ion. 154, 461–466 (2002)CrossRefGoogle Scholar
  19. 19.
    S. Liang, E. Broitman, Y. Wang, A. Cao, G. Veser, Highly stable, mesoporous mixed lanthanum–cerium oxides with tailored structure and reducibility. J. Mater. Sci. 46, 2928–2937 (2011)CrossRefGoogle Scholar
  20. 20.
    H. Li, G. Lu, Y. Wang, Y. Guo, Y. Guo, Synthesis of flower-like La or Pr-doped mesoporous ceria microspheres and their catalytic activities for methane combustion. Catal. Commun. 11, 946–950 (2010)CrossRefGoogle Scholar
  21. 21.
    B. Zhang, D. Li, X. Wang, Catalytic performance of La–Ce–O mixed oxide for combustion of methane. Catal. Today 158, 348–353 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Tsunekawa, K. Ishikawa, Z.-Q. Li, Y. Kawazoe, A. Kasuya, Origin of anomalous lattice expansion in oxide nanoparticles. Phys. Rev. Lett. 85, 3440 (2000)CrossRefGoogle Scholar
  23. 23.
    N.S. Arul, D. Mangalaraj, P.C. Chen, N. Ponpandian, C. Viswanathan, Self assembly of Co doped CeO2 microspheres from nanocubes by hydrothermal method and their photodegradation activity on AO7. Mater. Lett. 65, 3320–3322 (2011)CrossRefGoogle Scholar
  24. 24.
    F. Sedighi, M. Esmaeili-Zare, A. Sobhani-Nasab, M. Behpour, Synthesis and characterization of CuWO4 nanoparticle and CuWO4/NiO nanocomposite using co-precipitation method; application in photodegradation of organic dye in water. J. Mater. Sci.: Mater. Electron. 29, 13737–13745 (2018)Google Scholar
  25. 25.
    F. Chen, Y. Cao, D. Jia, Preparation and photocatalytic property of CeO2 lamellar. Appl. Surf. Sci. 257, 9226–9231 (2011)CrossRefGoogle Scholar
  26. 26.
    W. MingYan, Z. Wei, Z. DongEn et al., CeO2 hollow nanospheres decorated reduced graphene oxide composite for efficient photocatalytic dye-degradation. Mater. Lett. 137, 229–232 (2014)CrossRefGoogle Scholar
  27. 27.
    A.D. Liyanage, S.D. Perera, K. Tan, Y. Chabal, K.J. Balkus Jr., Synthesis, characterization, and photocatalytic activity of Y-doped CeO2 nanorods. ACS Catal. 4, 577–584 (2014)CrossRefGoogle Scholar
  28. 28.
    J. Saranya, K.S. Ranjith, P. Saravanan, D. Mangalaraj, R.T.R. Kumar, Cobalt-doped cerium oxide nanoparticles: enhanced photocatalytic activity under UV and visible light irradiation. Mater. Sci. Semicond. Process. 26, 218–224 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Panahi-Kalamuei, S. Alizadeh, M. Mousavi-Kamazani, M. Salavati-Niasari, Synthesis and characterization of CeO2 nanoparticles via hydrothermal route. J. Ind. Eng. Chem. 21, 1301–1305 (2015)CrossRefGoogle Scholar
  30. 30.
    F.S. Sangsefidi, M. Salavati-Niasari, H. Khojasteh, M. Shabani-Nooshabadi, Synthesis, characterization and investigation of the electrochemical hydrogen storage properties of CuO–CeO2 nanocomposites synthesized by green method. Int. J. Hydrog. Energy 42, 14608–14620 (2017)CrossRefGoogle Scholar
  31. 31.
    K. Singh, R. Kumar, A. Chowdhury, Synthesis of La-doped ceria nanoparticles: impact of lanthanum depletion. J. Mater. Sci. 51, 4134–4141 (2016)CrossRefGoogle Scholar
  32. 32.
    S.H. Lin, C.F. Peng, Treatment of textile wastewater by electrochemical method. Water Res. 28, 277–282 (1994)CrossRefGoogle Scholar
  33. 33.
    K. Kavitha, T. Vijayaraghavan, C. Kumbhar, P. Ojha, A. Ashok, Structural and conductivity properties of K doped Ba4Ca2Nb2O11 (BCN) complex perovskite for energy applications. J. Alloys Compd. 686, 930–937 (2016)CrossRefGoogle Scholar
  34. 34.
    R. Ramamoorthy, D. Sundararaman, S. Ramasamy, Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs. Solid State Ion. 123, 271–278 (1999)CrossRefGoogle Scholar
  35. 35.
    A.V. Coles-Aldridge, R.T. Baker, Ionic conductivity in multiply substituted ceria-based electrolytes. Solid State Ion. 316, 9–19 (2018)CrossRefGoogle Scholar
  36. 36.
    J. McBride, K. Hass, B. Poindexter, W. Weber, Raman and x-ray studies of Ce1−xRExO2−y, where RE = La, Pr, Nd, Eu, Gd, and Tb. J. Appl. Phys. 76, 2435–2441 (1994)CrossRefGoogle Scholar
  37. 37.
    G. Xiao, S. Li, H. Li, L. Chen, Synthesis of doped ceria with mesoporous flowerlike morphology and its catalytic performance for CO oxidation. Microporous Mesoporous Mater. 120, 426–431 (2009)CrossRefGoogle Scholar
  38. 38.
    L. Wu, J.A. Aguiar, P.P. Dholabhai et al., Interface energies of nanocrystalline doped ceria: effects of manganese segregation. J. Phys. Chem. C 119, 27855–27864 (2015)CrossRefGoogle Scholar
  39. 39.
    N. Laosiripojana, S. Assabumrungrat, Catalytic dry reforming of methane over high surface area ceria. Appl. Catal. B 60, 107–116 (2005)CrossRefGoogle Scholar
  40. 40.
    H. Yao, Y.Y. Yao, Ceria in automotive exhaust catalysts: I. oxygen storage. J. Catal. 86, 254–265 (1984)CrossRefGoogle Scholar
  41. 41.
    Y.J. Kang, H.J. Park, G.M. Choi, The effect of grain size on the low-temperature electrical conductivity of doped CeO2. Solid State Ion. 179, 1602–1605 (2008)CrossRefGoogle Scholar
  42. 42.
    N. Jaiswal, S. Upadhyay, D. Kumar, O. Parkash, Ionic conductivity investigation in lanthanum (La) and strontium (Sr) co-doped ceria system. J. Power Sour. 222, 230–236 (2013)CrossRefGoogle Scholar
  43. 43.
    D.K. Pradhan, R. Choudhary, B. Samantaray, Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes. Int. J. Electrochem. Sci. 3, 597–608 (2008)Google Scholar
  44. 44.
    B. Paul, K. Singh, T. Jaroń, A. Roy, A. Chowdhury, Structural properties and the fluorite–pyrochlore phase transition in La2Zr2O7: the role of oxygen to induce local disordered states. J. Alloys Compd. 686, 130–136 (2016)CrossRefGoogle Scholar
  45. 45.
    T.X. Sayle, S.C. Parker, C.R.A. Catlow, Surface segregation of metal ions in cerium dioxide. J. Phys. Chem. 98, 13625–13630 (1994)CrossRefGoogle Scholar
  46. 46.
    X. Liu, K. Zhou, L. Wang, B. Wang, Y. Li, Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 131, 3140–3141 (2009)CrossRefGoogle Scholar
  47. 47.
    S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 112, 269–278 (2004)CrossRefGoogle Scholar
  48. 48.
    K. Singh, K. Kumar, S. Nayak et al., Structural and dielectric properties of the fluorite-type LaxCe1−xO2−δ ceramics. J. Phys. D 50, 495601 (2017)CrossRefGoogle Scholar
  49. 49.
    R. Gerhardt-Anderson, A. Nowick, Ionic conductivity of CeO2 with trivalent dopants of different ionic radii. Solid State Ion. 5, 547–550 (1981)CrossRefGoogle Scholar
  50. 50.
    J.E. Hong, T. Inagaki, S. Ida, T. Ishihara, Titania-added Ce0.6La0.4O2−δ for the buffer layer of high-performance solid oxide fuel cells using doped lanthanum gallate electrolyte film. J. Am. Ceram. Soc. 95, 3588–3596 (2012)CrossRefGoogle Scholar
  51. 51.
    H. Yamamura, E. Katoh, M. Ichikawa, K. Kakinuma, T. Mori, H. Haneda, Multiple doping effect on the electrical conductivity in the (Ce(1−xy)La(x)M(y))O2−delta (M = Ca, Sr) system. Electrochemistry 68, 455–459 (2000)Google Scholar
  52. 52.
    L. Li, B. Zhu, J. Zhang, C. Yan, Y. Wu, Electrical properties of nanocube CeO2 in advanced solid oxide fuel cells. Int. J. Hydrog. Energy 43, 12909–12916 (2018)CrossRefGoogle Scholar
  53. 53.
    K. Eguchi, Ceramic materials containing rare earth oxides for solid oxide fuel cell. J. Alloys Compd. 250, 486–491 (1997)CrossRefGoogle Scholar
  54. 54.
    P.C.C. Daza, R.A.M. Meneses, J.L. de Almeida Ferreira, J.A. Araujo, A.C.M. Rodrigues, C.R.M. da Silva, Influence of microstructural characteristics on ionic conductivity of ceria based ceramic solid electrolytes. Ceram. Int. 44, 2138–2145 (2018)CrossRefGoogle Scholar
  55. 55.
    E.Y. Pikalova, A.A. Murashkina, V.I. Maragou, A.K. Demin, V.N. Strekalovsky, P.E. Tsiakaras, CeO2 based materials doped with lanthanides for applications in intermediate temperature electrochemical devices. Int. J. Hydrog. Energy 36, 6175–6183 (2011)CrossRefGoogle Scholar
  56. 56.
    X. Sha, Z. Lü, X. Huang et al., Study on La and Y co-doped ceria-based electrolyte materials. J. Alloys Compd. 428, 59–64 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Metallurgical and Materials EngineeringIndian Institute of TechnologyPatnaIndia
  2. 2.Naval Materials Research LaboratoryAmbernathIndia

Personalised recommendations