Advertisement

Improving the stability of silver nanowire/polyimide composite films for transparent film heaters

  • Xiaoqing Shi
  • Wei Xu
  • Wenfeng Shen
  • Guoliang Wang
  • Runfei Wang
  • Xing Li
  • Weijie Song
Article
  • 20 Downloads

Abstract

Flexible and transparent heaters have gradually attracted considerable attention because of its widely application in defrosting or demisting windows and medical thermotherapy. The stability of the heater under ambient conditions during working is one of the important properties. In this paper, we fabricated a highly stable and transparent film heater (TFH) through a simple drop-coating approach with burying silver nanowires (AgNWs) between colorless polyimide (cPI) and polymethyl methacrylate (PMMA). The developed TFH exhibited higher stability with the resistance increasing by 17% only for the initial value of 9.6 Ω after accelerating test at 105 °C and 100% relative humidity for 36 h, which was much lower than that of 83% for TFH without PMMA. Furthermore, the fabricated film heater covered with PMMA showed extreme stability in hydrogen sulfide oven. Meanwhile, there was no significant influence in the transmittance, mechanical flexibility and heating performance after coating a PMMA layer. Finally, we applied the film heater to demisting demonstration.

Notes

Acknowledgements

This work was supported by the Program for the Ningbo Municipal Science and Technology Innovative Research Team (No. 2016B10005). Supports were also provided by National Natural Science Foundation of China (Nos. 61774160 and 61605224) and Ningbo Natural Science Foundation (Nos. 2017A610026 and 2017A610021).

Supplementary material

10854_2018_480_MOESM1_ESM.docx (12.9 mb)
Supplementary material 1 (DOCX 13194 KB)

References

  1. 1.
    D.S. Leem, A. Edwards, M. Faist, J. Nelson, D.D.C. Bradley, J.C. de Mello, Adv. Mater 23, 4371 (2011)CrossRefGoogle Scholar
  2. 2.
    Y. Jin, Y. Sun, K. Wang, Y. Chen, Z. Liang, Y. Xu, F. Xiao, Nano Res. 11, 1998 (2018)CrossRefGoogle Scholar
  3. 3.
    R. Fan, C. Zhang, X. Yin, Y. Xiong, S. Xu, X. Yan, F. Deng, J. Mater. Sci.: Mater. Electron. 28, 10092 (2017)Google Scholar
  4. 4.
    J. Lee, P. Lee, H. Lee, D. Lee, S.S. Lee, S.H. Ko, Nanoscale 4, 6408 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Kang, S.J. Song, Y.E. Sul, B.S. An, Z. Yin, Y. Choi, L. Pu, C.W. Yang, Y.S. Kim, S.M. Cho, J.G. Kim, J.H. Cho, ACS Nano 12, 4894 (2018)CrossRefGoogle Scholar
  6. 6.
    L. Lian, D. Dong, S. Yang, B. Wei, G. He, ACS Appl. Mater. Interfaces 9, 11811 (2017)CrossRefGoogle Scholar
  7. 7.
    H.G. Cheong, R.E. Triambulo, G.H. Lee, I.S. Yi, J.W. Park, ACS Appl. Mater. Interfaces 6, 7846 (2014)CrossRefGoogle Scholar
  8. 8.
    T. Kim, Y.W. Kim, H.S. Lee, H. Kim, W.S. Yang, K.S. Suh, Adv. Funct. Mater. 23, 1250 (2013)CrossRefGoogle Scholar
  9. 9.
    S.J. Lee, J.W. Kim, J.H. Park, Y. Porte, J.H. Kim, J.W. Park, S. Kim, J.M. Myoung, J. Mater. Sci. 53, 12284 (2018)CrossRefGoogle Scholar
  10. 10.
    K.H. Kim, N.S. Jang, S.H. Ha, J.H. Cho, J.M. Kim, Small 14, 1704232 (2018)CrossRefGoogle Scholar
  11. 11.
    B. Li, S. Ye, I.E. Stewart, S. Alvarez, B.J. Wiley, Nano Lett. 15, 6722 (2015)CrossRefGoogle Scholar
  12. 12.
    F. Fang, G.W. Huang, H.M. Xiao, Y.Q. Li, N. Hu, S.Y. Fu, Compos. Sci. Technol. 156, 144 (2018)CrossRefGoogle Scholar
  13. 13.
    D. Lee, H. Lee, Y. Ahn, Y. Jeong, D.Y. Lee, Y. Lee, Nanoscale 5, 7750 (2013)CrossRefGoogle Scholar
  14. 14.
    M.B. Gebeyehu, T.F. Chala, S.Y. Chang, C.M. Wu, J.Y. Lee, RSC Adv. 7, 16139 (2017)CrossRefGoogle Scholar
  15. 15.
    B. You, B.K. Ju, J.W. Kim, Sens. Actuators A 250, 123 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Mayousse, C. Celle, A. Fraczkiewicz, J.P. Simonato, Nanoscale 7, 2107 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Jiu, J. Wang, T. Sugahara, S. Nagao, M. Nogi, H. Koga, K. Suganuma, M. Hara, E. Nakazawa, H. Uchida, RSC Adv. 5, 27657 (2015)CrossRefGoogle Scholar
  18. 18.
    C. Kleber, R. Wiesinger, J. Schnöller, U. Hilfrich, H. Hutter, M. Schreiner, Corros. Sci. 50, 1112 (2008)CrossRefGoogle Scholar
  19. 19.
    J.P. Franey, G.W. Kammlott, T.E. Graedel, Corros. Sci. 25, 133 (1985)CrossRefGoogle Scholar
  20. 20.
    T.E. Graedel, J.P. Franey, G.J. Gualtieri, G.W. Kammlott, D.L. Malm, Corros. Sci. 25, 1163 (1985)CrossRefGoogle Scholar
  21. 21.
    L. Volpe, P.J. Peterson, Corros. Sci. 29, 1179 (1989)CrossRefGoogle Scholar
  22. 22.
    H.H. Khaligh, K. Liew, Y. Han, N.M. Abukhdeir, I.A. Goldthorpe, Sol. Energy Mater. Sol. Cells 132, 337 (2015)CrossRefGoogle Scholar
  23. 23.
    X. He, A. Liu, X. Hu, M. Song, F. Duan, Q. Lan, J. Xiao, J. Liu, M. Zhang, Y. Chen, Q. Zeng, Nanotechnology 27, 475709 (2016)CrossRefGoogle Scholar
  24. 24.
    H.Y. Lu, C.Y. Chou, J.H. Wu, J.J. Lin, G.S. Liou, J. Mater. Chem. C 3, 3629 (2015)CrossRefGoogle Scholar
  25. 25.
    W. Lan, Y. Chen, Z. Yang, W. Han, J. Zhou, Y. Zhang, J. Wang, G. Tang, Y. Wei, W. Dou, Q. Su, E. Xie, ACS Appl. Mater. Interfaces 9, 6644 (2017)CrossRefGoogle Scholar
  26. 26.
    M. Patel, K.R. Chauhan, J. Kim, J.W. Kim, D. Lim, Sens. Actuators A 267, 8 (2017)CrossRefGoogle Scholar
  27. 27.
    P. Li, J.G. Ma, H.Y. Xu, H.C. Zhu, Y.C. Liu, Appl. Phys. Lett. 110, 161901 (2017)CrossRefGoogle Scholar
  28. 28.
    S. Ji, W. He, K. Wang, Y. Ran, C. Ye, Small 10, 4951 (2014)CrossRefGoogle Scholar
  29. 29.
    H.M. Tong, C.K. Hu, C. Feger, P.S. Ho, Polym. Eng. Sci. 26, 1213 (1986)CrossRefGoogle Scholar
  30. 30.
    S. Yao, J. Cui, Z. Cui, Y. Zhu, Nanoscale 9, 3797 (2017)CrossRefGoogle Scholar
  31. 31.
    K. Pyo, J.W. Kim, Curr. Appl. Phys. 16, 1453 (2016)CrossRefGoogle Scholar
  32. 32.
    S.J. Choi, S.J. Kim, J.S. Jang, J.H. Lee, I.D. Kim, Small 12, 5826 (2016)CrossRefGoogle Scholar
  33. 33.
    Y. Yu, W.F. Shen, F. Li, X.Z. Fang, H. Duan, F. Xu, Y.H. Xiong, W. Xu, W.J. Song, RSC Adv. 7, 28670 (2017)CrossRefGoogle Scholar
  34. 34.
    EIA/JEDEC Standard, Highly-accelerated temperature and humidity stress test (HAST) JESD22-A110-B (1999)Google Scholar
  35. 35.
    V. Nagarajan, R. Chandiramouli, J. Inorg. Organomet. Polym. Mater. 26, 394 (2016)CrossRefGoogle Scholar
  36. 36.
    G.L. Wang, W. Xu, F. Xu, W.F. Shen, W.J. Song, Mater. Res. Express 4, 116405 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ningbo Institute of Material Technology and EngineeringChinese Academy of SciencesNingboChina
  2. 2.School of Materials Science and Chemical EngineeringNingbo UniversityNingboChina
  3. 3.Jiangsu Collaborative Innovation Center of Photovoltaic Science and EngineeringChangzhouChina

Personalised recommendations