Electrochemical performances of graphene and MWCNT supported metallurgical grade silicon anodes

  • Gizem HatipogluEmail author
  • Miraç Alaf
  • Hatem Akbulut


In this study, we described the production of metallurgical grade silicon based MWCNTs and graphene reinforced composite anodes to be an alternative for solving the volume expansion problem of silicon anodes. The active materials of composite anodes were prepared via high energy ball milling methods. The first stage of production was to grind the low cost metallurgical grade silicon into micrometer particles by ring milling and high-energy ball milling methods. To get yolk–shell structure, the obtained particles were coated with carbon and etched by using hydrofluoric acid, respectively. Hummers method was used to prepare graphene oxide and the obtained graphene oxide was reduced to graphene via using hydrazine hydrate solution. We used scanning electron microscopy and X-ray diffraction to evaluate the structure and morphology of the composite anodes. The electrochemical performances of composite anodes were characterized by galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy techniques. The results indicated that the yolk-shell structured silicon/MWCNT/Graphene composite anode yielded specific discharge capacity value of 695.65 mAh/g after 500 cycles at the current density of 200 mA/g.



This work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under the contract number 214M125. The authors would like to thank TUBITAK and acknowledge the contribution of the COST Action CA15107 (MultiComp). We thank Davut Uzun, Associate Professor for support about TUBITAK Marmara Research Center Battery Technologies Laboratory.


  1. 1.
    M. Memm, A. Hoffmann, M. Wohlfahrt-Mehrens, Electrochim. Acta 260, 664 (2018)CrossRefGoogle Scholar
  2. 2.
    Y.-S. Na, H. Yoo, T.-H. Kim, J. Choi, W.I. Lee, S. Choi, D.-W. Park, Thin Solid Films 587, 14 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Sohn, D.S. Kim, H. Il Park, J.H. Kim, H. Kim, Electrochim. Acta 196, 197 (2016)CrossRefGoogle Scholar
  4. 4.
    H. Liu, Z. Hu, Y. Su, H. Ruan, R. Hu, L. Zhang, Appl. Surf. Sci. 392, 777 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, Y. Cui, Nano Lett. 12, 904 (2012)CrossRefGoogle Scholar
  6. 6.
    M.L. Terranova, S. Orlanducci, E. Tamburri, V. Guglielmotti, M. Rossi, J. Power Sources 246, 167 (2014)CrossRefGoogle Scholar
  7. 7.
    W. McSweeney, H. Geaney, C. O’Dwyer, Nano Res. 8, 1395 (2015)CrossRefGoogle Scholar
  8. 8.
    D. Ma, Z. Cao, A. Hu, Nano-Micro Lett. 6, 347 (2014)CrossRefGoogle Scholar
  9. 9.
    L. Noerochim, J.-Z. Wang, S.-L. Chou, H.-J. Li, H.-K. Liu, Electrochim. Acta 56, 314 (2010)CrossRefGoogle Scholar
  10. 10.
    X. Li, X. Zhang, Y. Zhao, D. Feng, Z. Su, Y. Zhang, Electrochim. Acta 191, 215 (2016)CrossRefGoogle Scholar
  11. 11.
    Z. Hu, S. Zhang, C. Zhang, G. Cui, Coord. Chem. Rev. 326, 34 (2016)CrossRefGoogle Scholar
  12. 12.
    X. Chen, X. Li, F. Ding, W. Xu, J. Xiao, Y. Cao, P. Meduri, J. Liu, G.L. Graff, J.-G. Zhang, Nano Lett. 12, 4124 (2012)CrossRefGoogle Scholar
  13. 13.
    X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Nano Energy 31, 113 (2017)CrossRefGoogle Scholar
  14. 14.
    X. Zhou, Y.-X. Yin, L.-J. Wan, Y.-G. Guo, Chem. Commun. 48, 2198 (2012)CrossRefGoogle Scholar
  15. 15.
    H. Zhang, P.V. Braun, Nano Lett. 12, 2778 (2012)CrossRefGoogle Scholar
  16. 16.
    L. Deng, Y. Cui, J. Chen, J. Wu, A.P. Baker, Z. Li, X. Zhang, Electrochim. Acta 192, 303 (2016)CrossRefGoogle Scholar
  17. 17.
    W.J. Zhang, J. Power Sources 196, 13 (2011)CrossRefGoogle Scholar
  18. 18.
    H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Nat. Nanotechnol. 7, 310 (2012)CrossRefGoogle Scholar
  19. 19.
    M. Haruta, T. Okubo, Y. Masuo, S. Yoshida, A. Tomita, T. Takenaka, T. Doi, M. Inaba, Electrochim. Acta 224, 186 (2017)CrossRefGoogle Scholar
  20. 20.
    L. Sun, J. Wang, Y. Li, L. Deng, Y. Wang, X. Ren, P. Zhang, J. Solid State Electrochem. 21, 2281 (2017)CrossRefGoogle Scholar
  21. 21.
    C.K. Chan, R.N. Patel, M.J.O. Connell, B.A. Korgel, Y. Cui, Nano Lett. 4, 1443 (2010)Google Scholar
  22. 22.
    J. Chen, L. Bie, J. Sun, F. Xu, Mater. Res. Bull. 73, 394 (2016)CrossRefGoogle Scholar
  23. 23.
    W. Weng, H. Lin, X. Chen, J. Ren, Z. Zhang, L. Qiu, G. Guan, H. Peng, J. Mater. Chem. A 2, 9306 (2014)CrossRefGoogle Scholar
  24. 24.
    X. Zhu, H. Chen, Y. Wang, L. Xia, Q. Tan, H. Li, Z. Zhong, F. Su, X.S. Zhao, J. Mater. Chem. A 1, 4483 (2013)CrossRefGoogle Scholar
  25. 25.
    N.S. Hieu, J.C. Lim, J.K. Lee, Microelectron. Eng. 89, 138 (2012)CrossRefGoogle Scholar
  26. 26.
    C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3, 31 (2008)CrossRefGoogle Scholar
  27. 27.
    Z. Wen, G. Lu, S. Mao, H. Kim, S. Cui, K. Yu, X. Huang, P.T. Hurley, O. Mao, J. Chen, Electrochem. Commun. 29, 67 (2013)CrossRefGoogle Scholar
  28. 28.
    W. Ren, Y. Wang, Z. Zhang, Q. Tan, J. Mater. Chem. A 4, 552 (2015)CrossRefGoogle Scholar
  29. 29.
    B. Scrosati, J. Hassoun, Y.-K. Sun, Energy Environ. Sci. 4, 3287 (2011)CrossRefGoogle Scholar
  30. 30.
    T.D. Bogart, D. Oka, X. Lu, M. Gu, C. Wang, B.A. Korgel, ACS Nano 8, 915 (2014)CrossRefGoogle Scholar
  31. 31.
    Y. Ru, D.G. Evans, H. Zhu, and W. Yang, RSC Adv. 4, 71 (2014)CrossRefGoogle Scholar
  32. 32.
    L. Gan, H. Guo, Z. Wang, X. Li, W. Peng, J. Wang, S. Huang, M. Su, Electrochim. Acta 104, 117 (2013)CrossRefGoogle Scholar
  33. 33.
    S.G. Louie, Carbon Nanotub (Springer, Berlin, Heidelberg, 2001), pp. 113–145CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, X.G. Zhang, H.L. Zhang, Z.G. Zhao, F. Li, C. Liu, H.M. Cheng, Electrochim. Acta 51, 4994 (2006)CrossRefGoogle Scholar
  35. 35.
    R. Zhou, H. Guo, Y. Yang, Z. Wang, X. Li, Y. Zhou, Powder Technol. 295, 296 (2016)CrossRefGoogle Scholar
  36. 36.
    J. Tang, A.D. Dysart, D.H. Kim, R. Saraswat, G.M. Shaver, V.G. Pol, Electrochim. Acta 247, 626 (2017)CrossRefGoogle Scholar
  37. 37.
    J. Wu, X. Qin, H. Zhang, Y.-B. He, B. Li, L. Ke, W. Lv, H. Du, Q.-H. Yang, F. Kang, Carbon 84, 434 (2015)CrossRefGoogle Scholar
  38. 38.
    Y. Xu, G. Yin, Y. Ma, P. Zuo, X. Cheng, J. Mater. Chem. 20, 3216 (2010)CrossRefGoogle Scholar
  39. 39.
    L. Wei, Z. Hou, H. Wei, Electrochim. Acta 229, 445 (2017)CrossRefGoogle Scholar
  40. 40.
    N. Liu, H. Wu, M.T. McDowell, Y. Yao, C. Wang, Y. Cui, Nano Lett. 12, 3315 (2012)CrossRefGoogle Scholar
  41. 41.
    J. Chang, X. Huang, G. Zhou, S. Cui, S. Mao, J. Chen, Nano Energy 15, 679 (2015)CrossRefGoogle Scholar
  42. 42.
    F. Maroni, R. Raccichini, A. Birrozzi, G. Carbonari, R. Tossici, F. Croce, R. Marassi, F. Nobili, J. Power Sources 269, 873 (2014)CrossRefGoogle Scholar
  43. 43.
    B. Zhu, Y. Jin, Y. Tan, L. Zong, Y. Hu, L. Chen, Y. Chen, Q. Zhang, J. Zhu, Nano Lett. 15, 5750 (2015)CrossRefGoogle Scholar
  44. 44.
    Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Adv. Energy Mater. 7, 1700715 (2017)CrossRefGoogle Scholar
  45. 45.
    U. Toçoğlu, G. Hatipoğlu, M. Alaf, F. Kayış, H. Akbulut, Appl. Surf. Sci. 389, 507 (2016)CrossRefGoogle Scholar
  46. 46.
    J. Guerrero-Contreras, F. Caballero-Briones, Mater. Chem. Phys. 153, 209 (2015)CrossRefGoogle Scholar
  47. 47.
    X. Zhang, Z. Zhang, B. Nie, H. Chen, G. Wang, J. Mu, X. Zhang, H. Che, W. Wang, Ceram. Int. 44, 7291 (2018)CrossRefGoogle Scholar
  48. 48.
    X. Fang, J. Zang, X. Wang, M.-S. Zheng, N. Zheng, J. Mater. Chem. A 2, 6191 (2014)CrossRefGoogle Scholar
  49. 49.
    L. Xue, G. Xu, Y. Li, S. Li, K. Fu, Q. Shi, X. Zhang, ACS Appl. Mater. Interfaces 5, 21 (2013)CrossRefGoogle Scholar
  50. 50.
    S.H. Ng, J. Wang, D. Wexler, S.Y. Chew, H.K. Liu, J. Phys. Chem. C 111, 11131 (2007)CrossRefGoogle Scholar
  51. 51.
    J.P. Lavine, D.D. Tuschel, MRS Proc. 588, 149 (1999)CrossRefGoogle Scholar
  52. 52.
    W. Luo, Y. Wang, S. Chou, Y. Xu, W. Li, B. Kong, S.X. Dou, H.K. Liu, J. Yang, Nano Energy 27, 255 (2016)CrossRefGoogle Scholar
  53. 53.
    D.C. SMITH, G. GODARD, J. Metamorph. Geol. 31, 19 (2013)CrossRefGoogle Scholar
  54. 54.
    J.E. Cebik, In Situ Raman Spectroscopy Study of the Nanodiamond-To-Carbon Onion Transformation During Thermal Annealing of Detonation Nanodiamond Powder, Naval Postgraduate School, 2012Google Scholar
  55. 55.
    H.F. Arani, A.R. Mirhabibi, S. Collins, R. Daroughegi, A. Khalife Soltani, R. Naghizadeh, N. Riahi-Noori, R. Aghababazadeh, A. Westwood, RSC Adv. 7, 5533 (2017)CrossRefGoogle Scholar
  56. 56.
    K. Tang, R.J. White, X. Mu, M.-M. Titirici, P.A. van Aken, J. Maier, ChemSusChem 5, 400 (2012)CrossRefGoogle Scholar
  57. 57.
    L.Y. Yang, H.Z. Li, J. Liu, Z.Q. Sun, S.S. Tang, M. Lei, Sci. Rep. 5, 10908 (2015)CrossRefGoogle Scholar
  58. 58.
    K. Byun, W. Lee, Thin Solid Films 376, 26 (2000)CrossRefGoogle Scholar
  59. 59.
    M. Ashuri, Q. He, Y. Liu, K. Zhang, S. Emani, M.S. Sawicki, J.S. Shamie, L.L. Shaw, Electrochim. Acta 215, 126 (2016)CrossRefGoogle Scholar
  60. 60.
    C. Li, Z. Zhuang, X. Jin, Z. Chen, Appl. Surf. Sci. 422, 469 (2017)CrossRefGoogle Scholar
  61. 61.
    H. Sohn, D.H. Kim, R. Yi, D. Tang, S.E. Lee, Y.S. Jung, D. Wang, J. Power Sources 334, 128 (2016)CrossRefGoogle Scholar
  62. 62.
    C.-C. Hou, S. Brahma, S.-C. Weng, C.-C. Chang, J.-L. Huang, Appl. Surf. Sci. 413, 160 (2017)CrossRefGoogle Scholar
  63. 63.
    Q. Zhao, J. Xu, X.Y. Xu, Z. Wang, D.P. Yu, Appl. Phys. Lett. 85, 5331 (2004)CrossRefGoogle Scholar
  64. 64.
    Y. Matsumura, J. Electrochem. Soc. 142, 2914 (1995)CrossRefGoogle Scholar
  65. 65.
    H. Tang, Y.J. Zhang, Q.Q. Xiong, J.D. Cheng, Q. Zhang, X.L. Wang, C.D. Gu, J.P. Tu, Electrochim. Acta 156, 86 (2015)CrossRefGoogle Scholar
  66. 66.
    N. Li, S. Jin, Q. Liao, H. Cui, C.X. Wang, Nano Energy 5, 105 (2014)CrossRefGoogle Scholar
  67. 67.
    H. Du, L. Jiao, Q. Wang, W. Peng, D. Song, Y. Wang, H. Yuan, J. Power Sources 196, 5751 (2011)CrossRefGoogle Scholar
  68. 68.
    M. Wang, D. Jia, J. Li, J. Huang, RSC Adv. 4, 33981 (2014)CrossRefGoogle Scholar
  69. 69.
    V. Chabot, K. Feng, H.W. Park, F.M. Hassan, A.R. Elsayed, A. Yu, X. Xiao, Z. Chen, Electrochim. Acta 130, 127 (2014)CrossRefGoogle Scholar
  70. 70.
    H. Yue, S. Wang, Z. Yang, Q. Li, S. Lin, D. He, Electrochim. Acta 174, 688 (2015)CrossRefGoogle Scholar
  71. 71.
    E. Biserni, N. Garino, A. Li Bassi, P. Bruno, C. Gerbaldi, ECS Trans. 62, 107 (2014)CrossRefGoogle Scholar
  72. 72.
    F. Li, H. Yue, Z. Yang, X. Li, Y. Qin, D. He, Mater. Lett. 128, 132 (2014)CrossRefGoogle Scholar
  73. 73.
    Q. Pan, P. Zuo, S. Lou, T. Mu, C. Du, X. Cheng, Y. Ma, Y. Gao, G. Yin, J. Alloys Compd. 723, 434 (2017)CrossRefGoogle Scholar
  74. 74.
    Y. Zhang, Y. Pan, Y. Chen, B.L. Lucht, A. Bose, Carbon 112, 72 (2017)CrossRefGoogle Scholar
  75. 75.
    Y.X. Lin, Z. Liu, K. Leung, L.Q. Chen, P. Lu, Y. Qi, J. Power Sources 309, 221 (2016)CrossRefGoogle Scholar
  76. 76.
    S.P.V. Nadimpalli, V.A. Sethuraman, S. Dalavi, B. Lucht, M.J. Chon, V.B. Shenoy, P.R. Guduru, J. Power Sources 215, 145 (2012)CrossRefGoogle Scholar
  77. 77.
    M. Sangare, G.J. Fodjouong, X. Huang, Mendeleev Commun. 23, 284 (2013)CrossRefGoogle Scholar
  78. 78.
    Z. He, N. Wagner, S.D. Minteer, L.T. Angenent, Environ. Sci. Technol. 40, 5212 (2006)CrossRefGoogle Scholar
  79. 79.
    J. Feng, Z. Zhang, L. Ci, W. Zhai, Q. Ai, S. Xiong, J. Power Sources 287, 177 (2015)CrossRefGoogle Scholar
  80. 80.
    S.L. Chou, J.Z. Wang, M. Choucair, H.K. Liu, J.A. Stride, S.X. Dou, Electrochem. Commun. 12, 303 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dept. of Metallurgy and Materials EngineeringSakarya UniversitySakaryaTurkey
  2. 2.Dept. of Metallurgy and Materials EngineeringBilecik Şeyh Edebali UniversityBilecikTurkey

Personalised recommendations