Advertisement

Growth of SnS nanoparticles and its ability as ethanol gas sensor

  • Chandan Rana
  • Swades Ranjan Bera
  • Satyajit SahaEmail author
Article
  • 23 Downloads

Abstract

SnS nanoparticles are grown by chemical route using tetrahydrofuran as medium. Sodium borohydride acts as reducing agent. The growth time is varied from 3 to 14 h at room temperature. The crystallite size increases with increase of growth time. The band gap is maximum for 3 h grown sample and decreases for samples grown for longer time. Photoluminescence spectra show possible defect states. Energy dispersive X-ray analysis shows that stoichiometry is well maintained for sample grown for 7 h. The films of SnS are deposited on glass from the dispersed medium. Atomic force microscopy analysis shows that roughness is small for lower growth time sample. The gas sensing in ethanol are carried out for different growth time films. The sensitivity is maximum for optimum growth time sample i.e. for the sample grown for 7 h. The chain like structure and good stochiometry of the SnS nanoparticles increases the sensitivity of ethanol gas sensing. Rapid response and recovery times of these sensors are observed for samples especially for 7 h grown sample at 250 °C.

Notes

Acknowledgements

We are thankful to University Grant Commission (UGC) and Department of Science and Technology (DST) for their constant support for providing various instrumental facilities to Physics and Technophysics Department of Vidyasagar University.

References

  1. 1.
    Y. Zhao, Z. Zhang, H. Dang, W. Liu, Synthesis of tin sulfide nanoparticles by a modified solution dispersion method. Mater. Sci. Eng. B 113, 175–178 (2004)CrossRefGoogle Scholar
  2. 2.
    J. Liu, D. Xue, Sn-based nanomaterials converted from SnS nanobelts: facile synthesis, characterizations, optical properties and energy storage performances. Electrochim. Acta 56, 243–250 (2010)CrossRefGoogle Scholar
  3. 3.
    X.G. Peng, L. Manna, L.W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000)CrossRefGoogle Scholar
  4. 4.
    C. Lai, M. Lu, L. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J. Mater. Chem. 22, 19–30 (2012)CrossRefGoogle Scholar
  5. 5.
    Y. Lee, Y. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19, 604–609 (2009)CrossRefGoogle Scholar
  6. 6.
    W. Wang, L. Shi, D. Lan, Q. Li, Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration. J. Power Sources 377, 1–6 (2018)CrossRefGoogle Scholar
  7. 7.
    F.W. Lee, C.W. Ma, Y.H. Lin, P.C. Huang, Y.L. Su, Y.J. Yang, A micromachined photo-supercapacitor integrated with CdS-sensitized solar cells and buckypaper. Sens. Mater. 28, 7 (2016)Google Scholar
  8. 8.
    N.B. Sonawane, K.V. Gurav, R.R. Ahire, J.H. Kim, B.R. Sankapal, CdS nanowires with PbS nanoparticles surface coating as room temperature liquefied petroleum gas sensor. Sens. Actuator A 216, 78–83 (2014)CrossRefGoogle Scholar
  9. 9.
    S.T. Navale, A.T. Mane, M.A. Chougule, N.M. Shinde, J.H. Kim, V.B. Patil, Highly selective and sensitive CdS thin film sensors for detection of NO2 gas. RSC Adv. 4, 44547–44554 (2014)CrossRefGoogle Scholar
  10. 10.
    K. Cen et al., A risk-based methodology for the optimal placement of hazardous gas detectors. Chin. J. Chem. Eng. 26(5), 1078–1086 (2017)CrossRefGoogle Scholar
  11. 11.
    Q. Yang, et.al., First-principles study of sulfur dioxide sensor based on phosphorenes. IEEE Electron Device Libr. 37, 660–662 (2016)CrossRefGoogle Scholar
  12. 12.
    A.R. Gardeshzadeh, B. Raissi, E. Marzbanrad, H. Mohebbi, Fabrication of resistive CO gas sensor based on SnO2 nanopowders via low frequency AC electrophoretic deposition. J. Mater. Sci.: Mater. Electron. 20, 127–131 (2009)Google Scholar
  13. 13.
    M. Li, et. al., Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection. Sens. Actuator B 217, 198–201 (2015)CrossRefGoogle Scholar
  14. 14.
    D. Zhang, A. Liu, H. Chang, B. Xia, Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv. 5, 3016–3022 (2015)CrossRefGoogle Scholar
  15. 15.
    X. Zeng, et al., Highly sensitive and selective formaldehyde gas sensor based on CdO–In2O3 beaded porous nanotubes at low temperature. J. Mater. Sci. Mater. Electron. (2018).  https://doi.org/10.1007/s10854-018-9854-x CrossRefGoogle Scholar
  16. 16.
    J. Tan, J. Chen, K. Liu, X. Huang, Synthesis of porous α-Fe2O3 microrods via insitu decomposition of FeC2O4 precursor for ultra-fast responding and recovering ethanol gas sensor. Sens. Actuator B 230, 46–53 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Gaiardo, B. Fabbri, V. Guidi, P. Bellutti, A. Giberti, S. Gherardi, L. Vanzetti, C. Malagu, G. Zonta, Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors 16, 296 (2016)CrossRefGoogle Scholar
  18. 18.
    M.F. Afsar, M.A. Rafiq, A.I.Y. Tok, Two-dimensional SnS nanoflakes: synthesis and application to acetone and alcohol sensors. RSC Adv. 7, 21556–21566 (2017)CrossRefGoogle Scholar
  19. 19.
    A. Giberti, et al., Tin(IV) sulfide nanorods as a new gas sensing material. Sens. Actuator B 223, 827–833 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Zhu, D. Yang, Y. Ji, H. Zhang, X. Shen, Two-dimensional SnS nanosheets fabricated by a novel hydrothermal method. J. Mater. Sci. 40, 591–595 (2005)CrossRefGoogle Scholar
  21. 21.
    M. Ristov, G. Sinadinovski, I. Grozdanov, M. Mitreski, Chemical deposition of tin(II) sulphide thin films. Thin Solid Films 173, 53–58 (1989)CrossRefGoogle Scholar
  22. 22.
    S. Cheng, G. Conibeer, Physical properties of very thin films deposited by thermal evaporation. Thin Solid Films 520, 837–841 (2011)CrossRefGoogle Scholar
  23. 23.
    A. Giberti, D. Casotti, G. Cruciani, B. Fabbri, A. Gaiardo, V. Guidi, C. Malagu, G. Zonta, S. Gherardi, Electrical conductivity of CdS films for gas sensing: selectivity properties to alcoholic chains. Sens. Actuators B 207, 504–510 (2015)CrossRefGoogle Scholar
  24. 24.
    S. Bandyopadhyay, B. Chatterjee, P. Nag, A. Bandyopadhyay, Nanocrystalline PbS as ammonia gas sensor: synthesis and characterization. CLEAN–Soil Air Water 43(8), 1121–1127 (2015)CrossRefGoogle Scholar
  25. 25.
    S.P. Wang, C.H. Wu, C.C. Hong, MoS2 nanosensors fabricated by dielectrophoretic assembly for ultrasensitive and rapid sensing of volatile organic compounds. Sensors 2015, 1–4 (2015)Google Scholar
  26. 26.
    A.A. Sagade, R. Sharma, Copper sulphide (Cu2S) as an ammonia gas sensor working at room temperature. Sens. Actuators B 133, 135–143 (2008)CrossRefGoogle Scholar
  27. 27.
    A. Muthuvinayagam, B. Viswanathan, Hydrothermal synthesis and LPG sensing ability of SnS nanomaterial. Indian J. Chem. Sect. A 54, 155–160 (2015)Google Scholar
  28. 28.
    J. Lu, C. Nan, L. Li, Q. Peng, Y. Li, Flexible SnS nanobelts: facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res. 6(1), 55–64 (2013)CrossRefGoogle Scholar
  29. 29.
    J. Cai, Z. Li, P.K. Shen, Porous SnS nnaorods/carbon hybrid materials as high stable and high capacity anode for Li-ion batteries. ACS Appl. Mater. Interfaces 4, 4093–4098 (2012)CrossRefGoogle Scholar
  30. 30.
    H. Liu, Y. Liu, Z. Wang, P. He, Facile synthesis of monodisperse, size-tunable SnS nanoparticles potentially for solar cell energy conversion. Nanotechnology 21, 105707 (2010)CrossRefGoogle Scholar
  31. 31.
    Z. Deng, D. Cao, J. He, S. Lin, S.M. Lindsay, Y. Liu, Solution synthesis of ultrathin single crystalline SnS nanoribbons for photodetectors via phase transition and surface processing. ACS Nano 6, 6197–6207 (2012)CrossRefGoogle Scholar
  32. 32.
    Y. Li, H. Huaqing, J. Tu, Nanostructured SnS/carbon composite for supercapacitor. Mater. Lett. 21, 1785–1787 (2009)CrossRefGoogle Scholar
  33. 33.
    A.M. Tripathi, S. Mitra, Tin sulfide (SnS) nanorods: structural, optical and lithium storage property study. RSC Adv. 20(4), 10358–10366 (2014)CrossRefGoogle Scholar
  34. 34.
    J. Ning, K. Men, G. Xiao, L. Wang, Q. Dai, B. Zou, B. Liua, G. Zoua, Facile synthesis of IV–VI SnS nanocrystals with shape and size control: nanoparticles, nanoflowers and amorphous nanosheets. Nanoscale 2, 1699–1703 (2010)CrossRefGoogle Scholar
  35. 35.
    S.R. Suryawanshi, S.S. Warule, S.S. Patil, K.R. Patil, M.A. More, Vapor–liquid–solid growth of one-dimensional tin sulfide (SnS) nanostructures with promising field emission behavior. ACS Appl. Mater. Interfaces 6, 2018–2025 (2014)CrossRefGoogle Scholar
  36. 36.
    W. Cai, J. Hu, Y. Zhao, H. Yang, J. Wang, W. Xiang, Synthesis and characterization of nanoplate-based SnS microflowers via a simple solvothermal process with biomolecule assistance. Adv. Powder Technol. 23, 850–854 (2012)CrossRefGoogle Scholar
  37. 37.
    M. Salavati-Niasari, D. Ghanbari, F. Davar, Shape selective hydrothermal synthesis of tin sulfide nanoflowers based on nanosheets in the presence of thioglycolic acid. J. Alloys Compd. 492, 570–575 (2010)CrossRefGoogle Scholar
  38. 38.
    S.H. Chaki, M.D. Chaudhary, M.P. Deshpande, SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques, J. Semicond. (2016).  https://doi.org/10.1088/1674-4926/37/5/053001 CrossRefGoogle Scholar
  39. 39.
    C.R. Patra, A. Odani, V.G. Pol, D. Aurbach, A. Gedanken, Microwave-assisted synthesis of tin sulfide nanoflakes and their electrochemical performance as Li-inserting materials. J. Solid State Electrochem. 11, 186 (2007)CrossRefGoogle Scholar
  40. 40.
    B. Thangaraju, P. Kaliannan, Spray pyrolytic deposition and characterization of SnS and SnS2 thin films. J. Phys. D 33, 1054 (2000)CrossRefGoogle Scholar
  41. 41.
    S. Sohila, M. Rajalakshmi, C. Muthamizhchelvan, S. Kalavathi, C. Ghosh, R. Divakar, C.N. Venkiteswaran, N.G. Muralidharan, A.K. Arora, E. Mohandas, Synthesis and characterization of SnS nanosheets through simple chemical route. Mater. Lett. 65(8), 1148–1150 (2011)CrossRefGoogle Scholar
  42. 42.
    A. Gaiardo, P. Bellutti, S. Gherardi, G. Zonta, B. Fabbri, A. Giberti, V. Guidi, C. Malagu, Tin(IV) sulfide chemoresistivity: a possible new gas sensing material, XVIII AISEM Annual Conference 978-1-4799-8591-3 (2015)Google Scholar
  43. 43.
    H. Karami, S. Babaei, Application of tin sulfide-tin dioxide nanocomposite as oxygen gas-sensing agent. Int. J. Electrochem. Sci. 8, 12078–12087 (2013)Google Scholar
  44. 44.
    N.T.K. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014)CrossRefGoogle Scholar
  45. 45.
    W. Shi, L. Huo, H. Wang, H. Zhang, J. Yang, P. Wei, Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures. Nanotechnology 17, 2918–2924 (2006)CrossRefGoogle Scholar
  46. 46.
    J. Ge, W.J. Jin, H. Zhang, X. Wang, Q. Peng, Y.D. Li, High ethanol sensitive SnO2 microspheres. Sens. Actuator B 113, 937–943 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chandan Rana
    • 1
  • Swades Ranjan Bera
    • 1
  • Satyajit Saha
    • 1
    Email author
  1. 1.Department of Physics and TechnophysicsVidyasagar UniversityPaschim MedinipurIndia

Personalised recommendations