Advertisement

Construction of Ti3+ self-doped TiO2/BCN heterojunction with enhanced photoelectrochemical performance for water splitting

  • Zheng Liang
  • Junqi Li
  • Nan Lei
  • Liu Guo
  • Qianqian Song
Article
  • 24 Downloads

Abstract

Ti3+ self-doped TiO2/BCN heterojunction (Ti3+-TiO2/BCN) was constructed via a hydrothermal method with using NaBH4 as reducing agent. The BCN nanosheets function as a good support to block the agglomeration of Ti3+-TiO2 nanoparticles, which decreased the recombination of photogenerated charge carriers. The Ti3+-TiO2/BCN sample exhibited enhanced electronic conductivity and absorption in visible light region because of the introduction of Ti3+ and oxygen vacancies (Ov). The as-prepared Ti3+-TiO2/BCN sample showed enhanced photoelectrochemical (PEC) performance as confirmed by analyses of LSV, EIS, Bode plots and M–S. Under the visible light irradiation, the optimally Ti3+ self-doped TiO2/BCN heterojunction sample yield a photocurrent density of ∼ 0.69 mA/cm2 at 1.23 V versus RHE, which is over three times as high as BCN and TiO2/BCN at the same conditions.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51502165, and 51702193), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2017JQ5035), the Natural Science Foundation of Education Department of Shaanxi Provincial (Grant No. 16JK1086), and the Scientific Research Fund of Shaanxi University of Science & Technology (Grant No. BJ16-20, and BJ16-21).

References

  1. 1.
    A. Fujishima, K. Honda, Photolysis-decomposition of water at surface of an irradiated semiconductor. Nature 238, 238–245 (1972)CrossRefGoogle Scholar
  2. 2.
    T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014)CrossRefGoogle Scholar
  3. 3.
    P. Niu, G. Liu, H.M. Cheng, Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. J. Phys. Chem. C 116, 11013–11018 (2012)CrossRefGoogle Scholar
  4. 4.
    T. Wang, J. Gong, Single-crystal semiconductors with narrow band gaps for solar water splitting. Angew. Chem. 54, 10718–10732 (2015)CrossRefGoogle Scholar
  5. 5.
    D. Wang, X. Zhang, P. Sun, S. Lu, L. Wang, C. Wang, Y. Liu, Photoelectrochemical water splitting with rutile TiO2 nanowires array: synergistic effect of hydrogen treatment and surface modification with anatase nanoparticles. Electrochim. Acta 130, 290–295 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Sun, W. Wang, D. Li, L. Zhang, J. Dong, Solar light driven pure water splitting on quantum sized BiVO4 without any cocatalyst. ACS Catal. 4, 3498–3503 (2014)CrossRefGoogle Scholar
  7. 7.
    H. Wang, Y. Liang, L. Liu, J. Hu, W. Cui, Reduced graphene oxide wrapped Bi2WO6 hybrid with ultrafast charge separation and improved photoelectrocatalytic performance. Appl. Surf. Sci. 392, 51–60 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Lee, Q. Li, W. Kalb, X.Z. Liu, H. Berger, R.W. Carpick, J. Hone, Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010)CrossRefGoogle Scholar
  9. 9.
    X. Fu, Y. Hu, Y. Yang, W. Liu, S. Chen, Ball milled h-BN: an efficient holes transfer promoter to enhance the photocatalytic performance of TiO2, J. Hazard. Mater. 102, 244–245 (2013)Google Scholar
  10. 10.
    S. Meng, X. Ye, X. Ning, M. Xie, X. Fu, S. Chen, Selective oxidation of aromatic alcohols to aromatic aldehydes by BN/metal sulfide with enhanced photocatalytic activity. Appl. Catal. B 182, 356–368 (2016)CrossRefGoogle Scholar
  11. 11.
    Y. Longwei Yin, D. Bando, A. Golberg, M. Gloter, A. Li, T. Xiaoli Yuan, Sekiguchi, Porous BCN nanotubular fibers: growth and spatially resolved cathodoluminescence. J. Am. Chem. Soc. 127, 16354–16355 (2005)CrossRefGoogle Scholar
  12. 12.
    J. Li, N. Lei, H. Hao, J. Zhou, A series of BCN nanosheets with enhanced photoelectrochemical performances. Chem. Phys. Lett. 672, 99–104 (2017)CrossRefGoogle Scholar
  13. 13.
    A. Yamuna, A. Mandalam, A. Karthigaiselvi, M. Balasubramanian, B. Thiruparasakthi, S. Ravichandran, S. Mayavan, One-step synthesis of boron nitride carbon nanosheets containing zinc oxide for catalysis of the oxygen reduction reaction and degradation of organic dyes. Rsc Adv. 5, 69394–69399 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Xing, X. Li, J. Zhang, Synergistic effect on the visible light activity of Ti3+ doped TiO2 nanorods/boron doped graphene composite. Sci. Rep. 4, 5493 (2014)CrossRefGoogle Scholar
  15. 15.
    L. Sun, Z. Zhao, Y. Zhou, L. Liu, Anatase TiO nanocrystals with exposed {001} facets on graphene sheets molecular grafting for enhanced photocatalytic activity. Nanoscale 4, 613–620 (2012)CrossRefGoogle Scholar
  16. 16.
    G. Liu, L. Wang, H.G. Yang, H.M. Cheng, G.Q. Lu, Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 20, 831–843 (2010)CrossRefGoogle Scholar
  17. 17.
    X. Liu, S. Gao, H. Xu, Z. Lou, W. Wang, B. Huang, Y. Dai, Green synthetic approach for Ti3+ self-doped TiO2−x nanoparticles with efficient visible light photocatalytic activity. Nanoscale 5, 1870–1875 (2013)CrossRefGoogle Scholar
  18. 18.
    X. Cheng, Q. Cheng, L. Bo, X. Deng, J. Li, W. Pu, B. Zhang, H. Liu, X. Wang, One-step construction of N/Ti3+ codoped TiO2 nanotubes photoelectrode with high photoelectrochemical and photoelectrocatalytic performance. Electrochim. Acta 186, 442–448 (2015)CrossRefGoogle Scholar
  19. 19.
    W. Fang, M. Xing, J. Zhang, A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Appl. Catal. B 160, 240–246(2014)CrossRefGoogle Scholar
  20. 20.
    R. Kumar, S. Govindarajan, S.K.J. Rk, T.N. Rao, S.V. Joshi, S. Anandan, Facile one-step route for the development of in-situ Co-catalyst modified Ti3 + self-doped TiO2 for improved visible-light photocatalytic activity. ACS Appl Mater Interce 8, 41 (2016)Google Scholar
  21. 21.
    W. Zhou, W. Li, J.Q. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, D. Zhao, Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 136, 9280–9283 (2014)CrossRefGoogle Scholar
  22. 22.
    W. Liao, J. Yang, H. Zhou, M. Murugananthan, Y. Zhang, Electrochemically self-doped TiO2 nanotube arrays for efficient visible light photoelectrocatalytic degradation of contaminants. Electrochim. Acta 136, 310–317 (2014)CrossRefGoogle Scholar
  23. 23.
    C. Huang, C. Chen, M. Zhang, L. Lin, X. Ye, S. Lin, M. Antonietti, X. Wang, Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 6, 7698 (2015)CrossRefGoogle Scholar
  24. 24.
    X. Yu, X. Fan, L. An, G. Liu, Z. Li, J. Liu, P.A. Hu, Mesocrystalline Ti3+-TiO2 hybridized g-C3N4 for efficient visible-light photocatalysis. Carbon 128, 21–30 (2017)CrossRefGoogle Scholar
  25. 25.
    K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, In situ reduced synthesis of Ti3+ Self-Doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl. Mater. Inter. 7, 9023–9030 (2015)CrossRefGoogle Scholar
  26. 26.
    J. Wang, P. Yang, B. Huang, Self-doped TiO2– x nanowires with enhanced photocatalytic activity: Facile synthesis and effects of the Ti3+. Appl. Surf. Sci. 356, 391–398 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Huo, Y. Hu, H. Jiang, C. Li, In situ surface hydrogenation synthesis of Ti3+ self-doped TiO2 with enhanced visible light photoactivity. Nanoscale 6, 9078 (2014)CrossRefGoogle Scholar
  28. 28.
    Q. Zhu, Y. Peng, L. Lin, C.M. Fan, G.Q. Gao, R.X. Wang, A.W. Xu, Stable blue TiO nanoparticles for efficient visible light photocatalysts. J. Mater. Chem. A 2, 4429–4437 (2014)CrossRefGoogle Scholar
  29. 29.
    X. Xin, T. Xu, J. Yin, L. Wang, C. Wang, Management on the location and concentration of Ti3+ in anatase TiO2 for defects-induced visible-light photocatalysis. Appl. Catal. B 176, 354–362 (2015)CrossRefGoogle Scholar
  30. 30.
    L. Si, Z.A. Huang, K. Lv, D. Tang, C. Yang, Facile preparation of Ti3+ self-doped TiO2 nanosheets with dominant {001} facets using zinc powder as reductant. J. Alloys Compd. 601, 88–93 (2014)CrossRefGoogle Scholar
  31. 31.
    B. Klahr, S. Gimenez, F. Fabregatsantiago, T. Hamann, J. Bisquert, Water oxidation at hematite photoelectrodes: the role of surface states. J. Am. Chem. Soc. 134, 4294 (2012)CrossRefGoogle Scholar
  32. 32.
    M. Zhou, J. Bao, Y. Xu, J. Zhang, J. Xie, M. Guan, C. Wang, L. Wen, Y. Lei, Y. Xie, Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting. ACS Nano 8, 7088–7098 (2014)CrossRefGoogle Scholar
  33. 33.
    F. Wang, Y. Wang, X. Zhan, M. Safdar, J. Gong, J. He, Pt nanoparticle and CdS quantum dot assisted WO3 nanowires grown on flexible carbon fibers for efficient oxygen production. CrystEngComm 16, 1389–1394 (2014)CrossRefGoogle Scholar
  34. 34.
    W.P. Gomes, D. Vanmaekelbergh, Impedance spectroscopy at semiconductor electrodes: review and recent developments. Electrochim. Acta 41, 967–973 (1996)CrossRefGoogle Scholar
  35. 35.
    A.I. Kontos, V. Likodimos, T. Stergiopoulos, D.S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, P. Schmuki, Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles. Chem. Mater. 21, 662–672 (2010)CrossRefGoogle Scholar
  36. 36.
    W. Chen, T.Y. Liu, T. Huang, X.H. Liu, J.W. Zhu, G.R. Duan, X.J. Yang, In situ fabrication of novel Z-scheme Bi2WO6 quantum dots/g-C3N4 ultrathin nanosheets heterostructures with improved photocatalytic activity. Appl. Surf. Sci. 355, 379–387 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Song, M. Zheng, X. Yuan, Q. Li, F. Wang, L. Ma, Y. You, S. Liu, P. Liu, D. Jiang, Electrochemically induced Ti3+ self-doping of TiO2 nanotube arrays for improved photoelectrochemical water splitting. J. Mater. Sci. 52, 6976–6986 (2017)CrossRefGoogle Scholar
  38. 38.
    S.F. Fabregat, B.G. Garcia, J. Bisquert, P. Bogdanoff, A. Zaban, Mott Schottky analysis of nanoporous semiconductor electrodes in dielectric state deposited on SnO2 F conducting substrates. J. Electrochem. Soc. 150, E293–E298 (2003)CrossRefGoogle Scholar
  39. 39.
    T. Ishikawa, J.N. Takata, M. Kondo, H. Hara, K. Kobayashi, Domen, Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (lambda < or = 650 nm). J. Am. Chem. Soc. 124, 13547–13553 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zheng Liang
    • 1
  • Junqi Li
    • 1
  • Nan Lei
    • 1
  • Liu Guo
    • 1
  • Qianqian Song
    • 1
  1. 1.School of Materials Science and EngineeringShaanxi University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations