FeSiAl/ZnO-filled resin composite coatings with enhanced dielectric and microwave absorption properties

  • Liang ZhouEmail author
  • Julong Huang
  • Hongbo WangEmail author
  • Meng Chen
  • Yanli Dong
  • Fukang Zheng


Composite coatings with resin matrix and hybrid fillers of FeSiAl and ZnO powders have been developed for their potential application as microwave absorbing coatings. The effects of FeSiAl and ZnO content on the complex permittivity, complex permeability and reflection loss (RL) of such composite coatings were studied in the frequency range of 8.2–12.4 GHz (X-band). Compared with the complex permeability, the complex permittivity showed more dependence on the absorbent content and the permittivity values increase notably with increasing FeSiAl or ZnO content. Owing to the best impedance matching and appropriate electromagnetic attenuation, the composite coating filled with 35 wt% FeSiAl and 20 wt% ZnO powders exhibits the most desirable microwave absorption properties with the effective absorption bandwidth (< − 10 dB, > 90% absorption) 3.5 GHz in 8.6–12.1 GHz and the strong absorption peak − 40.5 dB at 10.4 GHz, when the thickness is 2.2 mm. The results suggest that FeSiAl/ZnO-filled resin composite coatings could be qualified as good candidates for highly efficient and strong microwave absorbing coatings.



This work was financially supported by the National Natural Science Foundation of China (No. 51302018), Natural Science Foundation of Shaanxi Province (No. 2014JQ6210, 2017JQ5018), the Fundamental Research Funds for the Central Universities from Chang’an University (No. 310831171005), and the Chang’an Scholar Program of Chang’an University (No. 201807CQ014).


  1. 1.
    P.C.P. Watts, W.-K. Hsu, A. Barnes, B. Chambers, High permittivity from defective multiwalled carbon nanotubes in the X-band. Adv. Mater. 15, 600–603 (2003)CrossRefGoogle Scholar
  2. 2.
    F. Qin, C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 111, 061301 (2012)CrossRefGoogle Scholar
  3. 3.
    Y. Zhai, D.M. Zhu, W.C. Zhou, D.D. Min, F. Luo, Enhanced impedance matching and microwave absorption properties of the MAMs by using ball-milled flaky carbonyl iron-BaFe12O19 as compound absorbent. J. Magn. Magn. Mater. 467, 82–88 (2018)CrossRefGoogle Scholar
  4. 4.
    M.K. Naidu, K. Ramji, B.V.S.R.N. Santhosi, K. Krushna Murthy, C. Subrahmanyam, B. Satyanarayana, Influence of NiFe alloy nanopowder on electromagnetic and microwave absorption properties of MWCNT/Epoxy composite. Adv. Polym. Tech. 37(2), 622–628 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Liu, X.L. Su, F. Luo, J. Xu, J.B. Wang, X.H. He, Y.H. Qu, Facile synthesis and microwave absorption properties of double loss Ti3SiC2/Co3Fe7 powders. Ceram. Int. 44, 1995–2001 (2018)CrossRefGoogle Scholar
  6. 6.
    J.L. Snoek, Gyromagnetic resonance in ferrites. Nature. 159, 90 (1947)CrossRefGoogle Scholar
  7. 7.
    C.K. Zhang, J.J. Jiang, S.W. Bie, L. Zhang, L. Miao, X.X. Xu, Electromagnetic and microwave absorption properties of surface modified Fe-Si-Al flakes with nylon. J. Alloys Compd. 527, 71–75 (2012)CrossRefGoogle Scholar
  8. 8.
    M.G. Han, L.J. Deng, Understanding the enhanced microwave permeability of Fe-Si-Al particles by Mossbauer spectroscopy. J. Magn. Magn. Mater. 337, 70–73 (2013)CrossRefGoogle Scholar
  9. 9.
    Y.B. Feng, C.M. Tang, T. Qiu, Effect of ball milling and moderate surface oxidization on the microwave absorption properties of FeSiAl composites. Mater. Sci. Eng. B 178, 1005–1011 (2013)CrossRefGoogle Scholar
  10. 10.
    L. Huang, X.F. Liu, D. Chuai, Y.X. Chen, R.H. Yu, Flaky FeSiAl alloy-carbon nanotube composite with tunable electromagnetic properties for microwave absorption. Sci. Rep. 6, 35377 (2016)CrossRefGoogle Scholar
  11. 11.
    P.J. Liu, Z.J. Yao, J.T. Zhou, Z.H. Yang, L.B. Kong, Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 4, 9738–9749 (2016)CrossRefGoogle Scholar
  12. 12.
    Y.P. Duan, W. Liu, L.L. Song, T.M. Wang, A discrete structure: FeSiAl/carbon black composite absorption coatings. Mater. Res. Bull. 88, 41–48 (2017)CrossRefGoogle Scholar
  13. 13.
    Z.B. Huang, W.C. Zhou, X.F. Tang, P. Li, J.K. Zhu, Dielectric and mechanical properties of MoSi2/Al2O3 composites prepared by hot pressing. J. Am. Ceram. Soc. 93(11), 3569–3572 (2010)CrossRefGoogle Scholar
  14. 14.
    Y. Liu, X.Y. Jian, X.L. Su, F. Luo, J. Xu, J.B. Wang, X.H. He, Y.H. Qu, Electromagnetic interference shielding and absorption properties of Ti3SiC2/nano Cu/epoxy resin coating. J. Alloys Compd. 740, 68–76 (2018)CrossRefGoogle Scholar
  15. 15.
    Y. Liu, Y.Y. Li, F. Luo, X.L. Su, J. Xu, J.B. Wang, Y.H. Qu, Y.M. Shi, Mechanical, dielectric and microwave absorption properties of TiC/cordierite composite ceramics. J. Mater. Sci.: Mater. Electron. 28, 12115–12121 (2017)Google Scholar
  16. 16.
    Y.C. Qing, W.C. Zhou, F. Luo, D.M. Zhu, Thin-thickness FeSiAl/flake graphite-filled Al2O3 ceramics with enhanced microwave absorption. Ceram. Int. 43, 870–874 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Sun, H.L. Xu, Y. Shen, H. Bi, W.F. Liang, R.B. Yang, Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites. J. Alloys Compd. 548, 18–22 (2013)CrossRefGoogle Scholar
  18. 18.
    J. Liu, W.Q. Cao, H.B. Jin, J. Yuan, D.Q. Zhang, M.S. Cao, Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. J. Mater. Chem. C 3, 4670–4677 (2015)CrossRefGoogle Scholar
  19. 19.
    L. Zhou, W.C. Zhou, T. Liu, F. Luo, D.M. Zhu, Influence of ZnO content and annealing temperature on the dielectric properties of ZnO/Al2O3 composite coatings. J. Alloys Compd. 509, 5903–5907 (2011)CrossRefGoogle Scholar
  20. 20.
    L. Zhou, M. Chen, Y.L. Dong, Z.W. Yuan, Enhanced dielectric and microwave absorption properties of Cr/Al2O3 coatings deposited by low-power plasma spraying. J. Am. Ceram. Soc. 100, 620–626 (2017)CrossRefGoogle Scholar
  21. 21.
    J.H. Wang, S.W. Or, J. Tan, Enhanced microwave electromagnetic properties of core/shell/shell structured Ni/SiO2/polyaniline hexagonal nanoflake composites with preferred magnetization and polarization orientations. Mater. Des. 153, 190–202 (2018)CrossRefGoogle Scholar
  22. 22.
    Y.C. Qing, J.B. Su, Q.L. Wen, F. Luo, D.M. Zhu, W.C. Zhou, Enhanced dielectric and electromagnetic interference shielding properties of FeSiAl/Al2O3 ceramics by plasma spraying. J. Alloys Compd. 651, 259–265 (2015)CrossRefGoogle Scholar
  23. 23.
    M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. Jin, Z.L. Hou, J. Yuan, Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 4, 6949–6956 (2012)CrossRefGoogle Scholar
  24. 24.
    H.T. Liu, H.F. Cheng, J. Wang, G.P. Tang, Dielectric properties of the SiC fiber-reinforced SiC matrix composites with the CVD SiC interphases. J. Alloys Compd. 491, 248–251 (2010)CrossRefGoogle Scholar
  25. 25.
    Y.C. Qing, D.D. Min, Y.Y. Zhou, F. Luo, W.C. Zhou, Graphene nanosheet- and flake carbonyl iron particle-filled epoxy-silicone composites as thin-thickness and wide-bandwidth microwave absorber. Carbon 86, 98–107 (2015)CrossRefGoogle Scholar
  26. 26.
    L. Zhou, W.C. Zhou, J.B. Su, F. Luo, D.M. Zhu, Effect of composition and annealing on the dielectric properties of ZnO/mullite composite coatings. Ceram. Int. 38, 1077–1083 (2012)CrossRefGoogle Scholar
  27. 27.
    P.C. Ji, G.Z. Xie, N.Y. Xie, J. Li, J.W. Chen, R.Q. Xu, J. Chen, Fabrication and microwave absorption properties of the flaky carbonyl iron/FeSiAl composite in S-band. J. Mater. Sci.: Mater. Electron. 29, 4711–4716 (2018)Google Scholar
  28. 28.
    W.Q. Zhang, Y.G. Xu, L.M. Yuan, J. Cai, D.Y. Zhang, Microwave absorption and shielding property of composites with FeSiAl and carbonous materials as filler. J. Mater. Sci. Technol. 28(10), 913–919 (2012)CrossRefGoogle Scholar
  29. 29.
    L. Kong, X.W. Yin, M.K. Han, L.T. Zhang, L.F. Cheng, Carbon nanotubes modified with ZnO nanoparticles: high-efficiency electromagnetic wave absorption at high-temperatures. Ceram. Int. 41, 4906–4915 (2015)CrossRefGoogle Scholar
  30. 30.
    Y. Liu, X.W. Yin, L. Kong, X.M. Liu, F. Ye, L.T. Zhang, L.F. Cheng, Electromagnetic properties of SiO2 reinforced with both multi-wall carbon nanotubes and ZnO particles. Carbon 64, 537–556 (2013)CrossRefGoogle Scholar
  31. 31.
    H.F. Li, J. Wang, Y.H. Huang, X.Q. Yan, J.J. Qi, J. Liu, Y. Zhang, Microwave absorption properties of carbon nanotubes and tetrapod-shaped ZnO nanostructures composites. Mater. Sci. Eng., B 175, 81–85 (2010)CrossRefGoogle Scholar
  32. 32.
    Y.C. Qing, Q.L. Wen, F. Luo, W.C. Zhou, Temperature dependence of electromagnetic properties of graphene nanosheets reinforced alumina ceramics in the X-band. J. Mater. Chem. C 4, 4853–4862 (2016)CrossRefGoogle Scholar
  33. 33.
    D.D. Min, W.C. Zhou, Y.C. Qing, F. Luo, D.M. Zhu, Greatly enhanced microwave absorption properties of highly oriented flake carbonyl iron/epoxy resin composites under applied magnetic field. J. Mater. Sci. 52, 2373–2383 (2017)CrossRefGoogle Scholar
  34. 34.
    Z.Y. Zhang, X.X. Liu, X.J. Wang, Y.P. Wu, R. Li, Effect of Nd-Co substitution on magnetic and microwave absorption properties of SrFe12O19 hexaferrites. J. Alloys Compd. 525, 114–119 (2012)CrossRefGoogle Scholar
  35. 35.
    C. Dan, X. Liu, R. Yu, J. Ye, Y. Shi, Enhanced microwave absorption properties of flake-shaped FePCB metallic glass/graphene composites. Compos. Part A. 89, 33–39 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChang’an UniversityXi’anChina
  2. 2.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations