Advertisement

Flexible TiO2-coated nanocellulose membranes incorporated with CdTe as electrodes in photoelectrochemical cells

  • Geneviève K. Pinheiro
  • Daliana Muller
  • Rafael B. Serpa
  • Françoise T. Reis
  • Maria L. Sartorelli
  • Marco A. Schiavon
  • Carlos R. Rambo
Article

Abstract

Incorporation of quantum dots (QDs) into porous matrices has triggered the development of novel optical devices. In this work, TiO2 sensitized by CdTe incorporated into bacterial nanocellulose (BNC) membranes were tested as photoelectrodes in a photoelectrochemical cell directed to the water splitting for hydrogen generation. The flexible membranes were produced by immersing BNC membranes in an aqueous solution of CdTe capped with glutathione (CdTe–GSH) and further deposited over a thin layer of TiO2. Incorporation of CdTe–GSH into BNC membranes was confirmed by infrared spectroscopy. Fluorescence spectroscopy revealed that the luminescence intensity increased with the immersion time in the CdTe–GSH solution. Field-emission gun scanning electron microscopy (FEG-SEM) images revealed that the CdTe/QDs (5 nm) were homogeneously dispersed on the cellulose nanofibers. BNC/CdTe–GSH membranes was tested as photoelectrodes. Photoelectrochemical cells exhibited a significant photocurrent in wavelengths ranging from 400 to 800 nm, which indicates their potential for applications as flexible electrodes, sensors and photovoltaic systems.

Notes

Acknowledgements

The authors thank the National Council for Scientific and Technological Development (CNPq/Brazil) and INEO for financial support and Coordination for the Improvement of Higher Level Personnel (CAPES/Brazil) for the scholarships. Central Laboratory of Electronic Microscopy (LCME at UFSC) is also acknowledged.

References

  1. 1.
    A.V. Kokate, A.S. Garde, IARJSET 3, 94 (2016)Google Scholar
  2. 2.
    F.F. Manuela, N. Chaniotakis, Sensors 9, 7266 (2009)CrossRefGoogle Scholar
  3. 3.
    B.K. Lee, S.J. Park, D.S. Kim, Curr. Appl. Phys. 13, 1520 (2013)CrossRefGoogle Scholar
  4. 4.
    S.K. Tripathi, R. Kaur, M. Sharma, J. Appl. Phys. A 118, 1287 (2015)CrossRefGoogle Scholar
  5. 5.
    D.M. Zhao, L.G. Sun, M.Q. Wang, J. Li, Adv. Mater. Res. 174, 140 (2012)Google Scholar
  6. 6.
    Q. Wang, A. Tang, Y. Liu, Z. Fang, S. Fu, Nanomaterials 6, 164 (2016)CrossRefGoogle Scholar
  7. 7.
    A. Majid, M. Bibi, Cadmium Based II-VI Semiconducting Nanomaterials (Springer, Cham, 2018), pp. 145–181CrossRefGoogle Scholar
  8. 8.
    J. Zhang, J. Hu, Y.F. Zhu, Q. Liu, H. Zhang, R.G. Du, C.J. Lin, Corros. Sci. 99, 118 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Zhang, R. Fu, Y. Gu, L. Dong, J. Li, S. Chen, J. Mater. Sci.: Mater. Electron. 28, 10158 (2017)Google Scholar
  10. 10.
    E. Morales-Narváez, H. Golmohammadi, T. Naghdi, H. Yousefi, U. Kostiv, D. Horak, N. Pourreza, A. Merkoçi, ACS Nano 9, 7296 (2015)CrossRefGoogle Scholar
  11. 11.
    W. Hu, S. Chen, J. Yang, L. Zhe, H. Wang, Carbohydr. Polym. 101, 1043 (2014)CrossRefGoogle Scholar
  12. 12.
    J.J. Pietron, A.M. Stux, R.S. Compton, D.R. Rolison, Sol. Energy Mater. Sol. Cells 91, 1066 (2007)CrossRefGoogle Scholar
  13. 13.
    W. Han, L. Ren, L. Gong, X. Qi, Y. Liu, L. Yang, X. Wei, J. Zhong, ACS Sustain. Chem. Eng. 2, 741 (2014)CrossRefGoogle Scholar
  14. 14.
    C.R. Rambo, D.O.S. Recouvreux, C.A. Carminatti, A.K. Pitlovanciv, R.V. Antônio, L.M. Porto, Mater. Sci. Eng. C 28, 549 (2008)CrossRefGoogle Scholar
  15. 15.
    L.C.S. Viol, M.A. Schiavon, Quím. Nova 34, 4 (2011)CrossRefGoogle Scholar
  16. 16.
    H.C. Braga, C.A. Salla, I.H. Bechtold, A.J. Bortoluzzi, B. Souza, H. Gallardo, Dyes Pigments 117, 149 (2015)CrossRefGoogle Scholar
  17. 17.
    W. Hu, S. Liu, S. Chen, H. Wang, Cellulose 18, 655 (2011)CrossRefGoogle Scholar
  18. 18.
    Z. Yang, S. Chen, W. Hu, N. Yin, W. Zhang, C. Xiang, H. Wang, Carbohydr. Polym. 88, 173 (2012)CrossRefGoogle Scholar
  19. 19.
    X. Li, S. Chen, W. Hu, S. Shi, W. Shen, X. Zhang, Carbohydr. Polym. 76, 509 (2009)CrossRefGoogle Scholar
  20. 20.
    D. Muller, C.R. Rambo, L.M. Porto, W.H. Schreiner, G.M. Barra, Carbohydr. Polym. 94, 655 (2013)CrossRefGoogle Scholar
  21. 21.
    F.O. Silva, M.S. Carvalho, R. Mendonça, W.A. Macedo, K. Balzuweit, P. Reis, M.A. Schiavon, Nanoscale Res. Lett. 7, 536 (2012)CrossRefGoogle Scholar
  22. 22.
    V. Pikulev, S. Loginova, V. Gurtov, Nanoscale Res. Lett. 7, 426 (2012)CrossRefGoogle Scholar
  23. 23.
    X.F. Gao, H.B. Li, W.T. Sun, Q. Chen, F.Q. Tang, L.M. Peng, J. Phys. Chem. C 113, 7531 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Department of Mechanical EngineringFederal University of Santa CatarinaFlorianópolisBrazil
  3. 3.Department of PhysicsFederal University of Santa CatarinaFlorianópolisBrazil
  4. 4.Department of ChemistryFederal University of São João del-ReiSão João del-ReiBrazil

Personalised recommendations