Advertisement

Photoelectrochemical activity of Ag loaded TiO2 nanotube arrays produced by sequential chemical bath deposition for water splitting

  • Kyana Mohammadi
  • Ahmad Moshaii
  • Maryam Azimzadehirani
  • Zahra-Sadat Pourbakhsh
Article

Abstract

We report on remarkable improvement of photoelectrochemical (PEC) properties of TiO2 nanotubes by loading of Ag nanoparticles into them. The silver nanoparticles were loaded on the nanotubes by sequential chemical bath deposition (S-CBD) with different number of deposition cycles. Various characterizations including field emission scanning electron microscopy, X-ray diffraction, and energy dispersive X-ray analysis (EDX), all confirm that the silver nanoparticles were deposited inside and outside of TiO2 nanotubes. In addition, the PEC properties of the samples were investigated using linear sweep voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. The PEC analyses clearly show that the photo-electrochemical activity of the Ag-loaded samples are considerably higher than the bare TiO2 nanotubes (about 3 times). This mostly originates from the improvement of light absorption due to the plasmonic effects in addition to better separation and transport of electron–hole pairs in the Ag-loaded samples relative to the bare TiO2 nanotubes. All results indicate that the maximum efficiency were obtained for the 8-cycle of S-CBD Ag-loading on the bare TiO2 nanotubes.

Notes

Acknowledgements

We acknowledge Tarbiat Modares University for funding support of this work.

References

  1. 1.
    T.N. Veziroğlu, S. Şahi, Energy Convers. Manage. (2007)  https://doi.org/10.1016/j.enconman.2007.08.015 CrossRefGoogle Scholar
  2. 2.
    S. Zhang, B. Peng, S. Yang, H. Wang, H. Yu, Y. Fang, F. Peng, Int. J. Hydrogen Energy (2015)  https://doi.org/10.1016/j.ijhydene.2014.10.122 CrossRefGoogle Scholar
  3. 3.
    H.M. Chen, C.K. Chen, C.J. Chen, L.C. Cheng, P.C. Wu, B.H. Cheng, Y.Z. Ho et al. ACS Nano (2012)  https://doi.org/10.1021/nn3024877 CrossRefGoogle Scholar
  4. 4.
    P. Kumar, P. Sharma, R. Shrivastav, S. Dass, V.R. Satsangi, Int. J. Hydrogen Energy (2011)  https://doi.org/10.1016/j.ijhydene.2010.11.107 CrossRefGoogle Scholar
  5. 5.
    Y. Sun, C.J. Murphy, K.R. Reyes-Gi, E.A. Reyes-Garcia, J.M. Thornton, N.A. Morris, D. Raftery, Int. J. Hydrogen Energy (2009)  https://doi.org/10.1016/j.ijhydene.2009.08.015 CrossRefGoogle Scholar
  6. 6.
    J. Li, N. Wu, Catal. Sci. Technol. (2014)  https://doi.org/10.1039/c4cy90047b CrossRefGoogle Scholar
  7. 7.
    A. Fujishima, K. Honda, Nature (1972)  https://doi.org/10.1038/238037a0 CrossRefGoogle Scholar
  8. 8.
    J. Qiu, X. Li, X. Gao, X. Gan, B. Weng, L. Li, Z. Yuan, Z. Shi, Y.H. Hwang, J. Mater. Chem. (2012)  https://doi.org/10.1039/C2JM34574A CrossRefGoogle Scholar
  9. 9.
    Y.L. Pang, S. Lim, H.C. Ong, W.T. Chong, Appl. Catal. A (2014)  https://doi.org/10.1016/j.apcata.2014.05.007 CrossRefGoogle Scholar
  10. 10.
    N. Baram, Y. Ein-Eli, J. Phys. Chem. C (2010)  https://doi.org/10.1021/jp911687w CrossRefGoogle Scholar
  11. 11.
    L. Roman, R.D. Trusca, M.L. Soare, C. Fratila, E. Krasicka-Cydzik, M.S. Stan, A. Dinischiotu, Mater. Sci. Eng. (2014)  https://doi.org/10.1016/j.msec.2014.01.036 CrossRefGoogle Scholar
  12. 12.
    S. Preda, V.S. Teodorescu, A.M. Musuc, C. Andronescu, M. Zaharescu, J. Mater. Res. (2013)  https://doi.org/10.1557/jmr.2012.362 CrossRefGoogle Scholar
  13. 13.
    K. Xie, L. Sun, C. Wang, Y. Lai, M. Wang, H. Chen, C. Lin, Electrochim. Acta (2010)  https://doi.org/10.1016/j.electacta.2010.07.030 CrossRefGoogle Scholar
  14. 14.
    S. Liu, E. Guo, L. Yin, J Mater Chem. (2012)  https://doi.org/10.1039/C2JM15965A CrossRefGoogle Scholar
  15. 15.
    A.L. Linsebigler, L. Amy, G. Lu, J.R. Yates Jr., Chem. Rev. (1995)  https://doi.org/10.1021/cr00035a013 CrossRefGoogle Scholar
  16. 16.
    N. Lu, X. Quan, J. Li, S. Chen, H.T. Yu, G.H. Chen, J. Phys. Chem. C (2007)  https://doi.org/10.1021/jp071359d CrossRefGoogle Scholar
  17. 17.
    J.H. Park, S. Kim, A.J. Bard, Nano Lett. (2006)  https://doi.org/10.1021/nl051807y CrossRefGoogle Scholar
  18. 18.
    Y. Huo, Y. Jin, J. Zhu, H. Li, Appl. Catal. B (2009)  https://doi.org/10.1016/j.apcatb.2009.01.019 CrossRefGoogle Scholar
  19. 19.
    L. Sun, J. Li, C.L. Wang, S.F. Li, H.B. Chen, C.J. Lin, Sol Energy Mater. Sol Cells (2009)  https://doi.org/10.1016/j.solmat.2009.07.001 CrossRefGoogle Scholar
  20. 20.
    H. Liu, G. Liu, Q. Zhou, J. Solid State Chem. (2009)  https://doi.org/10.1016/j.jssc.2009.09.016 CrossRefGoogle Scholar
  21. 21.
    T.S. Kang, A.P. Smith, B.E. Taylor, M.F. Durstock, Nano Lett. (2009)  https://doi.org/10.1021/nl802818d CrossRefGoogle Scholar
  22. 22.
    Z. Liu, V. Subramania, M. Misra, J. Phys. Chem. C (2009)  https://doi.org/10.1021/jp903342s CrossRefGoogle Scholar
  23. 23.
    M. Sadeghi, W. Liu, T.G. Zhang, P. Stavropoulos, B. Levy, J. Phys. Chem. (1996)  https://doi.org/10.1021/jp961335z CrossRefGoogle Scholar
  24. 24.
    Y. Bessekhouad, D. Robert, J.V. Weber, Catal. Today (2005)  https://doi.org/10.1016/j.cattod.2005.03.038 CrossRefGoogle Scholar
  25. 25.
    Y. Xie, G. Ali, S.H. Yoo, S.O. Cho, ACS Appl. Mater. Interfaces (2010)  https://doi.org/10.1021/am100605a CrossRefGoogle Scholar
  26. 26.
    L. Yang, S. Luo, Y. Li, Y. Xiao, Q. Kang, Q. Cai, Environ. Sci. Technol. (2010)  https://doi.org/10.1021/es101711k CrossRefGoogle Scholar
  27. 27.
    Q. Wang, X. Yang, D. Liu, J. Zhao, J. Alloys Compd. (2012)  https://doi.org/10.1016/j.jallcom.2012.02.180 CrossRefGoogle Scholar
  28. 28.
    H.J. Lin, T.S. Yang, C.H. His, M.C. Wang, K.C. Lee, Ceram. Int. (2014)  https://doi.org/10.1016/j.ceramint.2014.03.046 CrossRefGoogle Scholar
  29. 29.
    S. Lin, D. Li, J. Wu, X. Li, S.A. Akbar, Sens. Actuators B (2011)  https://doi.org/10.1016/j.snb.2011.02.046 CrossRefGoogle Scholar
  30. 30.
    Y.H. Lin, T.K. Tseng, H. Chu, Appl. Catal. A (2014)  https://doi.org/10.1016/j.apcata.2013.10.006 CrossRefGoogle Scholar
  31. 31.
    K. Chen, X. Feng, R. Hu, Y. Li, K. Xie, Y. Li, H. Gu, J. Alloys Compd. (2013)  https://doi.org/10.1016/j.jallcom.2012.11.126 CrossRefGoogle Scholar
  32. 32.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, 1st edn. (Springer, Berlin Heidelberg, 2013), pp. 13–201Google Scholar
  33. 33.
    K. Matsubara, T. Tatsuma, Adv. Mater. (2007)  https://doi.org/10.1002/adma.200602823 CrossRefGoogle Scholar
  34. 34.
    H. Zhang, G. Wang, D. Chen, X. Lv, J. Li, Chem. Mater. (2008)  https://doi.org/10.1021/cm801796q CrossRefGoogle Scholar
  35. 35.
    I. Paramasivam, J.M. Macak, A. Ghicov, P. Schmuki, Chem. Phys. Lett. (2007)  https://doi.org/10.1016/j.cplett.2007.07.107 CrossRefGoogle Scholar
  36. 36.
    G. Guo, B. Yu, P. Yu, X. Chen, Talanta (2009)  https://doi.org/10.1016/j.talanta.2009.04.036 CrossRefGoogle Scholar
  37. 37.
    X. Liu, Z. Liu, J. Lu, X. Wu, B. Xu, W. Chu, Appl. Surf. Sci. (2014)  https://doi.org/10.1016/j.apsusc.2013.10.062 CrossRefGoogle Scholar
  38. 38.
    L. Sun, J. Li, C. Wang, S. Li, Y. Lai, H. Chen, C. Lin, J. Hazard. Mater. (2009)  https://doi.org/10.1016/j.jhazmat.2009.06.115 CrossRefGoogle Scholar
  39. 39.
    J. Jiao, J. Tang, W. Gao, D. Kuang, Y. Tong, L. Chen, J. Power Sources (2015)  https://doi.org/10.1016/j.jpowsour.2014.10.074 CrossRefGoogle Scholar
  40. 40.
    E. Thimsen, F.L. Formal, M. Grätzel, S.C. Warren, Nano Lett. (2010)  https://doi.org/10.1021/nl1022354 CrossRefGoogle Scholar
  41. 41.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles, 1st edn. (Wiley, Weinheim, 2008), pp. 3–11Google Scholar
  42. 42.
    C.F. Bohren, D.R. Huffman, Chem. Rev. (2011)  https://doi.org/10.1021/cr100313v CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsTarbiat Modares UniversityTehranIran
  2. 2.Department of ChemistryTarbiat Modares UniversityTehranIran

Personalised recommendations