Advertisement

Effect of the occupation of Ba and Ti sites on the structural, optical and dielectric properties of Sm-doped BaTiO3 ceramics

  • Fouad Es-saddik
  • Karoum Limame
  • Salaheddine SayouriEmail author
  • Taj-dine Lamcharfi
Article
  • 18 Downloads

Abstract

Sm-doped BaTiO3 powders have been synthesized with the help of the sol gel process. X-ray diffraction (XRD) patterns of the obtained powders, heat treated at a relatively low temperature (750 °C/3 h), revealed their crystallization in the pure perovskite structure without the presence of secondary phases. The occupation of the Ba and Ti sites by Sm in the BaTiO3 lattice and the evolution of the crystalline parameters as functions of the dopant content have been discussed based on XRD and Raman results. Dielectric measurements performed on the samples revealed a strong increasing diffuse character of the ferro-to-paraelectric phase transition with increasing Sm content. Moreover, the behavior of the permittivity as a function of frequency indicates that the samples are approaching their resonance frequency. The study of the conductivity showed the existence of a weak positive temperature coefficient of resistivity (PTCR) effect.

References

  1. 1.
    M.B. Smith, K. Page, T. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigerwald, J. Am. Chem. Soc. 130, 6955–6963 (2008)CrossRefGoogle Scholar
  2. 2.
    Z. Chao, W. Chun-Lei, L. Ji-Chao, Y. Kun, Chin. Phys. 16(5), 1422–1428 (2007)CrossRefGoogle Scholar
  3. 3.
    L.H. Parker, A.F. Tasch, IEEE Circuits Devices Mag. 6, 17–26 (1990)CrossRefGoogle Scholar
  4. 4.
    T. Kawaguchi, H. Adachi, K. Setsune, O.Y. Amazaki, K. Wasa, Appl. Opt. 23, 2187–2191 (1984)CrossRefGoogle Scholar
  5. 5.
    L.A. Thomas, Ferroelectrics 3, 231–238 (1972)CrossRefGoogle Scholar
  6. 6.
    D.Y. Lu, Y. Yue, X.Y. Sun, J. Alloys Compd. 586, 136–141 (2014)CrossRefGoogle Scholar
  7. 7.
    M.H. Lin, H.Y. Lu, Mater. Sci. Eng. A 335, 101 (2002)CrossRefGoogle Scholar
  8. 8.
    H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchi, T. Okuda, J. Eur. Ceram. Soc. 19, 1043 (1999)CrossRefGoogle Scholar
  9. 9.
    M.F. Yan, Mater. Sci. Eng. 48, 53 (1981)CrossRefGoogle Scholar
  10. 10.
    M.H. Lin, J.F. Chou, H.Y. Lu, J. Am. Ceram. Soc. 83, 2155 (2000)CrossRefGoogle Scholar
  11. 11.
    E. Brzozowski, M.S. Castro, C.R. Foschini, B. Stojanovic, Ceram. Int. 28, 773 (2002)CrossRefGoogle Scholar
  12. 12.
    Y. Hao, Y. Li, X. Yao, X. Wang, Ferroelectrics 407, 146–153 (2010)CrossRefGoogle Scholar
  13. 13.
    S. Lee, C.A. Randall, Appl. Phys. Lett. 92, 111904 (2008)CrossRefGoogle Scholar
  14. 14.
    Y. Tsur, C.A. Randall, Jpn. J. Appl. Phys. 40, 255–258 (2001)CrossRefGoogle Scholar
  15. 15.
    I. Sakaguchi, T. Furuta, S. Hirose, K. Watanabe, K. Kageyama, S. Hishita, H. Haneda, N. Ohashi, Key Eng. Mater. 582, 189–193 (2013)CrossRefGoogle Scholar
  16. 16.
    W. Cai, C. Fu, J. Gao, X. Deng, G. Chen, Z. Lin, Integr. Ferroelectr. 140, 92–103 (2012)CrossRefGoogle Scholar
  17. 17.
    Y. Hao, Y. Lin, X. Yao, X. Wang, Ferroelectrics 407, 146–153 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Park, Y.H. Han, Metal Mater. Int. 20(6), 1157–1161 (2014)CrossRefGoogle Scholar
  19. 19.
    H. Sun, X. Wang, X. Yao, Ferroelectrics 404, 99–104 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Ganguly, S.K. Rout, W.S. Woo, C.W. Ahn, I.W. Kim, Phys. B 411, 26–34 (2013)CrossRefGoogle Scholar
  21. 21.
    M.M.V. Petrovic, R. Grigalaitis, N. Ilic, J.D. Bobic, A. Dzunuzovic, J. Banys, B.D. Stojanovic, J. Alloys Compd. 724, 959–968 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Salhi, S. Sayouri, B. Jaber, L. Omari, Appl. Phys. A124, 389 (2018)CrossRefGoogle Scholar
  23. 23.
    G. Burns, Phy. Rev. B 10, 1951 (1974)CrossRefGoogle Scholar
  24. 24.
    M.C. Chang, S.C. Yu, J. Mater. Sci. Lett. 19, 1323–1325 (2000)CrossRefGoogle Scholar
  25. 25.
    U.D. Venkateswaran, V.M. Naik, R. Naik, Phys. Rev. B 58, 14256 (1998)CrossRefGoogle Scholar
  26. 26.
    R. Farhi, M. El Marssi, A. Simon, J. Ravez, Eur. Phys. J. B 18, 605–610 (2000)CrossRefGoogle Scholar
  27. 27.
    D.-Y. Lu, X.-Y. Sun, M. Toda, J. Phys. Chem. Solids 68, 650–664 (2007)CrossRefGoogle Scholar
  28. 28.
    P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, J. Raman Spectrosc. 32, 147–149 (2001)CrossRefGoogle Scholar
  29. 29.
    P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, J. Raman Spectrosc. 32, 69–71 (2001)CrossRefGoogle Scholar
  30. 30.
    V.M. Longo, A.T. Figueiredo, S. De Lazaro, M.F. Gurgel, M.G.S. Costa, C.O. Paivasantos, J.A. Varela, E. Longo, V. Mastelaro, R.F.S. De Vicente, A.C. Hernandes, R.W.A. Franco, J. Appl. Phys. 104, 023515 (2008)CrossRefGoogle Scholar
  31. 31.
    V. Paunovic, L. Zivkovic, V. Mitic, Sci. Sinter. 42, 69–79 (2010)CrossRefGoogle Scholar
  32. 32.
    K. Uchino, S. Nomura, Ferroelectr. Lett. Sect. 44, 55–61 (1982)CrossRefGoogle Scholar
  33. 33.
    D. Fu, S. Hao, L. Qiang, J. Mater. Sci.: Mater. Electron. 24, 1208–1212 (2013)Google Scholar
  34. 34.
    F. Wang, S. Hao, J. Li, J. Wang, Y. Gao, Y. Shen, S. Wang, J. Mater. Sci.: Mater. Electron. 25(8), 3543–3551 (2014)Google Scholar
  35. 35.
    A. Salhi, S. Sayouri, L. Hajji, T. Lamcharfi, J. Ceram. Process. Res. 17, 1–7 (2016)Google Scholar
  36. 36.
    M. Rao, K. Ramesh, M. Ramesh, B. Rao, Adv. Mater. Phys. Chem. 3, 77–82 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fouad Es-saddik
    • 1
  • Karoum Limame
    • 1
    • 2
  • Salaheddine Sayouri
    • 1
    Email author
  • Taj-dine Lamcharfi
    • 3
  1. 1.Laboratoire de Physique Théorique et AppliquéeFSDMFèsMorocco
  2. 2.Centre Régional des Metiers de l’Education et de la Formation de FèsFèsMorocco
  3. 3.LSSC, FST-FèsFèsMorocco

Personalised recommendations