Advertisement

Phase transformation and photoluminescence of undoped and Eu3+-doped zinc stannate (Zn2SnO4) nanocrystals synthesized by hydrothermal method

  • Nguyen Duy ThienEmail author
  • Luu Manh Quynh
  • Le Van Vu
  • Nguyen Ngoc Long
Article
  • 20 Downloads

Abstract

In this work we report a hydrothermal approach for synthesis of zinc stannate (Zn2SnO4–ZTO) nanocrystals. Structural properties and morphology of the samples were investigated in detail. In particular, our research focused on the effect of hydrothermal duration on the phase composition of ZTO nanocrystals. By combining X-ray diffraction analysis, scanning electron microscopy and selected area energy-dispersive X-ray spectroscopy, a crystalline phase transformation during the hydrothermal process was enlightened. The ZTO nanocrystals were doped with europium ions. The room-temperature emission spectra of the undoped ZTO and Eu3+-doped ZTO nanocrystals were recorded. The emission spectra of the undoped ZTO nanocrystals showed two broad bands related to the lattice defects, while the spectra of Eu3+-doped ZTO nanocrystals exhibited the narrow emission peaks, which were assigned to the radiative intra-configurational f–f transitions of Eu3+ ions.

Notes

Acknowledgements

This work is financially supported by Vietnam National University (the project of QG 18.19).

References

  1. 1.
    D. An, Q. Wang, X. Tong, Q. Zhou, Z. Li, Y. Zou, X. Lian, Y. Li, Synthesis of Zn2SnO4 via a co-precipitation method and its gas-sensing property toward ethanol. Sens. Actuators B 213, 155–163 (2015)CrossRefGoogle Scholar
  2. 2.
    I. Stambolova, K. Konstantinov, D. Kovacheva, P. Peshev, T. Donchev, Spray pyrolysis preparation and humidity sensing characteristics of spinel zinc stannate thin films. J. Solid State Chem. 128, 305–309 (1997)CrossRefGoogle Scholar
  3. 3.
    T. Jia, M. Liu, D. Yu, S. Mo, Z. Deng, W. Wang, A facile approach for the synthesis of Zn2SnO4/BiOBr hybrid nanocomposites with improved visible-light photocatalytic performance. Nanomaterials 8, 313 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Dinesh, S. Barathan, V.K. Premkumar, G. Sivakumar, N. Anandan, Hydrothermal synthesis of zinc stannate (Zn2SnO4) nanoparticles and its application towards photocatalytic and antibacterial activity. J. Mater. Sci. Mater. Electron. 27, 9668–9675 (2016)CrossRefGoogle Scholar
  5. 5.
    J. Emima Jeronsia, L. Allwin Joseph, M. Mary Jaculine, P. Annie Vinosha, S. Jerome Das, Hydrothermal synthesis of zinc stannate nanoparticles for antibacterial applications. J. Taibah Univ. Sci. 10, 601–606 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Rong, X.P. Gao, G.R. Li, T.Y. Yan, H.Y. Zhu, J.Q. Qu, D.Y. Song, Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery. J. Phys. Chem. B 110, 14754–14760 (2006)CrossRefGoogle Scholar
  7. 7.
    P.P. Das, A. Roy, S. Agarkar, P.S. Devi, Hydrothermally synthesized fluorescent Zn2SnO4 nanoparticles for dye sensitized solar cells. Dyes Pigments 154, 303–313 (2018)CrossRefGoogle Scholar
  8. 8.
    B. Tan, E. Toman, Y. Li, Y. Wu, Zinc stannate (Zn2SnO4) dye-sensitized solar cells. J. Am. Chem. Soc. 129, 4162–4163 (2007)CrossRefGoogle Scholar
  9. 9.
    S. Baruah, J. Dutta, Zinc stannate nanostructures: hydrothermal synthesis, Sci. Technol. Adv. Mater. 12, 013004 (2011)CrossRefGoogle Scholar
  10. 10.
    W. Mekprasart, T. Tangcharoen, P. Nakhanivej, W. Pecharapa, Synthesis and characterization of cubic-like zinc stannate powders prepared by co-precipitation method. Chiang Mai J. Sci. 43, 345–350 (2016)Google Scholar
  11. 11.
    Q.R. Hu, P. Jiang, H. Xu, Y. Zhang, S.L. Wang, X. Jia, W.H. Tang, Synthesis and photoluminescence of Zn2SnO4 nanowires. J. Alloys Compd. 484, 25–27 (2009)CrossRefGoogle Scholar
  12. 12.
    H.-F. Lin, S.-C. Liao, S.-W. Hung, C.-T. Hu, Thermal plasma synthesis and optical properties of Zn2SnO4 nanopowders. Mater. Chem. Phys. 117, 9–13 (2009)CrossRefGoogle Scholar
  13. 13.
    L.C. Nehru, C. Sanjeeviraja, Microwave-assisted solution combustion synthesis of nanostructured Zn2SnO4. Nanosci. Nanotech. 3, 10–13 (2013)Google Scholar
  14. 14.
    J.X. Wang, S.S. Xie, H.J. Yuan, X.Q. Yan, D.F. Liu, Y. Gao, Z.P. Zhou, L. Song, L.F. Liu, X.W. Zhao, X.Y. Dou, W.Y. Zhou, G. Wang, Synthesis, structure, and photoluminescence of Zn2SnO4 single crystal nanobelts and nanorings. Solid State Commun. 131, 435–440 (2004)CrossRefGoogle Scholar
  15. 15.
    L. Wang, X. Zhang, X. Liao, W. Yang, A simple method to synthesize single-crystalline Zn2SnO4 (ZTO) nanowires and their photoluminescence properties. Nanotechnology 16, 2928–2931 (2005)CrossRefGoogle Scholar
  16. 16.
    C. Pang, B. Yan, L. Liao, B. Liu, Z. Zheng, T. Wu, H. Sun, T. Yu, Synthesis, characterization and opto-electrical properties of ternary Zn2SnO4 nanowires. Nanotechnology 21, 465706 (2010)CrossRefGoogle Scholar
  17. 17.
    J.-W. Zhao, L.-R. Qin, L.-D. Zhang, Single-crystalline Zn2SnO4 hexangular microprisms: fabrication, characterization and optical properties. Solid State Commun. 141, 663–666 (2007)CrossRefGoogle Scholar
  18. 18.
    N.D. Thien, Le Van Vu, N.N. Tu, N.N. Viet, N.D. Phuong, N.N. Long, Hydrothermal synthesis and optical properties of undoped and Eu3+-doped zincstannate nanocrystals. Commun. Phys. 25, 327–339 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Sagadevan, J. Singh, K. Pal, Z.Z. Chowdhury, M.E. Hoque, Hydrothermal synthesis of zinc stannate nanoparticles spectroscopic investigation. J. Mater. Sci. Mater. Electron. 28, 11268–11274 (2017)CrossRefGoogle Scholar
  20. 20.
    X. Xianliang Fu, J. Wang, L.Z. Ding, T. Yan, G. Zhang, Z. Zhang, H. Lin, X. Fu, Hydrothermal synthesis, characterization, and photocatalytic properties of Zn2SnO4. J. Solid State Chem. 182, 517–524 (2009)CrossRefGoogle Scholar
  21. 21.
    X. Ji, X. Huang, J. Liu, J. Jiang, X. Li, R. Ding, Y.H.F. Wu, Q. Li, Hydrothermal synthesis of novel Zn2SnO4 octahedron microstructures assembled with hexagon nanoplates. J. Alloys Compd. 503, L21–L25 (2010)CrossRefGoogle Scholar
  22. 22.
    J. Zeng, M. Xin, K. Li, H. Wang, W. Zhang, Transformation process and photocatalytic activities of hydrothermally synthesized Zn2SnO4 nanocrystals. J. Phys. Chem. C 112, 4159–4167 (2008)CrossRefGoogle Scholar
  23. 23.
    S. Wang, Z. Yang, M. Lu, Y. Zhou, G. Zhou, Z. Qiu, S. Wang, H. Zhang, A. Zhang, Coprecipitation synthesis of hollow Zn2SnO4 spheres. Mater. Lett. 61, 3005–3008 (2007)CrossRefGoogle Scholar
  24. 24.
    Z. Fu, H.K. Yang, B.K. Moon, B.C. Choi, J.H. Jeong, Hydrothermal synthesis and optical characteristics of Eu3+ in Zn2SnO4 nanocrystals. Curr. Appl. Phys. 9, 1360–1364 (2009)CrossRefGoogle Scholar
  25. 25.
    Y.-C. Chen, Y.-H. Chang, B.-S. Tsai, Photoluminescent properties of europium-activated Zn2SnO4 phosphors. Mater. Trans. 45, 1684–1686 (2004)CrossRefGoogle Scholar
  26. 26.
    M. Dimitrievska, T.B. Ivetić, A.P. Litvinchuk, A. Fairbrother, B.B. Miljević, G.R. Štrbac, A.P. Rodríguez, S.R. Lukić-Petrović, Eu3+-doped wide band gap Zn2SnO4 semiconductor nanoparticles: structure and luminescence. J. Phys. Chem. C 120, 18887–18894 (2016)CrossRefGoogle Scholar
  27. 27.
    K.S.C. Kuttykrishnan, J.B. Mohammed, Hydrothermal growth of Zn2SnO4:Eu, Ca for red emission. Luminescence 33, 675–680 (2018)CrossRefGoogle Scholar
  28. 28.
    The JCPDS files are found from the library of the Siemens D5005 diffractometerGoogle Scholar
  29. 29.
    S.K. Ghandomani, B. Khoshnevisan, R. Yousefi, The capability of SnTe QDs as QDSCs working in the visible-NIR region and the effects of Eu-doping on improvement of solar cell parameters. J. Mater. Sci. Mater. Electron. 29, 18989–18996 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nguyen Duy Thien
    • 1
    Email author
  • Luu Manh Quynh
    • 1
  • Le Van Vu
    • 1
  • Nguyen Ngoc Long
    • 1
  1. 1.Centre for Materials Science, Faculty of PhysicsHanoi University of ScienceHanoiVietnam

Personalised recommendations