Advertisement

Systematic studies on Sr4La6(SiO4)6M2:Eu3+ (M = F/Cl) phosphors: effects of the halogen anions on photoluminescence

  • Lei Shi
  • Si-wen Zhao
  • Zhao Ying
  • Ya-jie Han
  • Meng Li
  • Mei-yu Zhang
  • Zhi-wei ZhangEmail author
Article
  • 17 Downloads

Abstract

We successfully prepared Sr4La6(SiO4)6F2:Eu3+ (SLSOF:Eu3+) and Sr4La6(SiO4)6Cl2:Eu3+ (SLSOC:Eu3+) oxyapatite phosphors via the traditional solid-state method. The phosphors’ structure and photoluminescence properties were investigated by scanning electron microscope (SEM), X-ray powder diffraction (XRD), photoluminescence (PL) spectroscopy, ultraviolet–visible spectra and temperature-dependent emission spectra. Among them, the irregular morphology of SLSOF and SLSOC particles was displayed by SEM images, and the phase formation of both sets of phosphors was illustrated by XRD analysis. Additionally, PL spectra indicated that the phosphor could be efficiently excited by the near ultraviolet (NUV) light, and then emitted shining red light, agreeing well with that the calculated color coordinates are within the red region. Comparatively, the luminescence intensity of SLSOF:Eu3+ is higher than that of SLSOC:Eu3+ on the basis of the greater electronegativity of F, which directly leads to the enhancement of 5D07F2 transition. The temperature-dependent emission spectra indicated that samples have excellent thermal stability. Internal quantum efficiency value of phosphors were calculated. These results indicated that the halogen anions of these Sr4La6(SiO4)6M2:Eu3+ play important roles in their PL properties and both phosphors have great potential to serve as red emitting phosphor for NUV white light emitting diodes.

Notes

Acknowledgements

This work was supported by the Doctoral Research Foundation of Hebei Normal University of Science and Technology (Grant No. 2016YB003). We also gratefully acknowledge instrumental analysis center of Hebei Normal University of Science and Technology.

References

  1. 1.
    Zhu Y, Cao L, Brik M G et al., Facile synthesis, morphology and photoluminescence of a novel red fluoride nanophosphor K2NaAlF6:Mn4+. J. Mater. Chem. C 5, 6420–6426 (2017)CrossRefGoogle Scholar
  2. 2.
    J.S. Zhong, D.Q. Chen, Y.J. Yuan, L.F. Chen, H. Yu, Z.G. Ji, Synthesis and spectroscopic investigation of Ba3La6(SiO4)6:Eu2+ green phosphors for white light-emitting diodes. Chem. Eng. J. 309, 795–801 (2017)CrossRefGoogle Scholar
  3. 3.
    Q. Zhou, H.Y. Tan, Q.H. Zhang, N. Wang, Q.W. Wei, Z.L. Wang, M.Z. Rong, Q. Wang, Mn4+ doped fluorotitanate phosphors: synthesis, optical properties and application in LED devices. RSC Adv. 7, 32094–32099 (2017)CrossRefGoogle Scholar
  4. 4.
    W.J. Zhou, M. Gu, Y.Y. Ou, C.H. Zhang, X.J. Zhang, L. Zhou, H.B. Liang, Concentration-driven selectivity of energy transfer channels and color tunability in Ba3La(PO4)3:Tb3+, Sm3+ for warm white LEDs. Inorg. Chem. 56, 7433–7442 (2017)CrossRefGoogle Scholar
  5. 5.
    J.S. Zhong, W. Xu, Q.L. Chen, S. Yuan, Z.G. Ji, D.Q. Chen, Mn4+, Li+ co-doped SrMgAl10O17 phosphor-in-glass: application in high-power warm w-LEDs. Dalton Trans. 46, 9959–9968 (2017)CrossRefGoogle Scholar
  6. 6.
    S.A. Zhang, Y. Li, Y. Lv, L.M. Fan, Y.H. Hu, M. He, A full-color emitting phosphor Ca9Ce(PO4)7:Mn2+, Tb3+: efficient energy transfer, stable thermal stability and high quantum efficiency. Chem. Eng. J. 322, 314–327 (2017)CrossRefGoogle Scholar
  7. 7.
    Z.W. Zhang, L.J. Wang, S.S. Yang, W.G. Chen, X.J. Chu, Synthesis and characterizations of novel Ba2La8(SiO4)6O2: Eu3+ oxyapatite phosphors. Dyes Pigments 142, 272–276 (2017)CrossRefGoogle Scholar
  8. 8.
    Q. Zhang, X.C. Wang, X. Ding, and Y.H. Wang, A potential red-emitting phosphor BaZrGe3O9:Eu3+ for WLED and FED applications: synthesis, structure, and luminescence properties. Inorg. Chem. 56, 6990–6998 (2017)CrossRefGoogle Scholar
  9. 9.
    Y.Y Zhang, L.F. Mei, H.K. Liu, D. Yang, L.B. Liao, Z.H. Huang, Dysprosium doped novel apatite-type white-emitting phosphor Ca9La(PO4)5(GeO4)F2 with satisfactory thermal properties for n-UV w-LEDs. Dyes Pigments 139, 180–186 (2017)CrossRefGoogle Scholar
  10. 10.
    X. Ding, Y.H. Wang,, The structure and photoluminescence properties of a novel apatite green phosphor Ba5(PO4)2SiO4: Eu2+ excited by NUV light. Phys. Chem. Chem. Phys. 19, 2449–2458 (2017)CrossRefGoogle Scholar
  11. 11.
    H.K. Liu, L.B. Liao, J. Chen, Q.F. Guo, Y.Y. Zhang, L.F. Mei, Tunable luminescence properties and energy transfer of Ba3NaLa(PO4)3F: Tb3+, Sm3+ phosphors with apatite structure. J. Lumin. 169, 739–743 (2016)CrossRefGoogle Scholar
  12. 12.
    P. Arunkumar, Y.H. Kim, W.B. Im, Versatile Ca4F2Si2O7 Host From Defect-Induced Host Emission to White Emitting Ce3+ Doped Ca4F2Si2O7 Phosphor for Near-UV Solid-State Lighting. J. Phys. Chem. C 120, 4495–4503 (2016)CrossRefGoogle Scholar
  13. 13.
    R.J. Yu, H.J. Li, H.L. Ma, C.F. Wang, H. Wang, A new blue-emitting phosphor of Ce3+-activated fluorosilicate, apatite Ba2Y3[SiO4]3F. J. Am. Ceram. Soc. 97, 1151–1156 (2014)CrossRefGoogle Scholar
  14. 14.
    R.J. Yu, N. Xue, T. Wang, Z. Zhao, J. Wang, Z.F. Hei, M.X. Li, H.M. Noh, J.H. Jeong, Photoluminescence characteristics of high thermal stable fluorosilicate apatite Ba2Y3[SiO4]3F:Sm3+ orange-red emitting phosphor. Ceram. Int. 41, 6030–6036 (2015)CrossRefGoogle Scholar
  15. 15.
    Q.F. Guo, L.B. Liao, Z.G. Xia, Luminescence properties and energy transfer in La6Ba4(SiO4)6F2:Ce3+, Tb3+ phosphors. J. Lumin. 145, 65–70 (2014)CrossRefGoogle Scholar
  16. 16.
    X.Y. Yan, Z.L. Fu, X.J. Wang, J.H. Jeong, Hydrothermal synthesis and luminescence properties of Ca5(PO4)3F: Eu3+ microrods. J. Lumin. 2(152), 226–229 (2014)CrossRefGoogle Scholar
  17. 17.
    F. Zhang, T. Lan, W.J. Tang, Tunable photoluminescence properties of Ca8NaLa(PO4)6F2: Eu2+,Mn2+ phosphor under UV excitation. Mater. Res. Bull. 64, 128–133 (2015)CrossRefGoogle Scholar
  18. 18.
    K. Li, D.L. Geng, M.M. Shang, Y. Zhang, H.Z. Lian, J. Li, Color-tunable luminescence and energy transfer properties of Ca9Mg(PO4)6F2:Eu2+, Mn2+ phosphors for UV-LEDs. J. Phys. Chem. C 118, 11026–11034 (2014)CrossRefGoogle Scholar
  19. 19.
    N. Guo, H.P. You, C.Z. Jia, R.Z. Ouyanga, D.H. Wu, A Eu2+ and Mn2+-coactivated fluoro-apatitestructure Ca6Y2Na2(PO4)6F2 as a standard white-emitting phosphor via energy transfer. Dalton Trans. 43, 12373–12379 (2014)CrossRefGoogle Scholar
  20. 20.
    Q.F. Guo, C.L. Zhao, L.B. Liao, S. Lis, H.K. Liu, L.F. Mei, Novel apatite KLaSr3(PO4)3F:Eu2+ phosphors: synthesis, structure, and luminescence properties. J. Mater. Res. 31, 3489–3497 (2016)CrossRefGoogle Scholar
  21. 21.
    S.S. Hu, W.J. Tang, Blue-white-orange tunable luminescence from Ca6La2Na2(PO4)6F2:Eu2+, Mn2+ phosphors excited by UV light. Mater. Chem. Phys. 143, 228–232 (2013)CrossRefGoogle Scholar
  22. 22.
    M.B. Xie, G.X. Zhu, D.Y. Li, R.K. Pana, X.H. Fu, Eu2+→Tb3+→Eu3+ energy transfer in Ca6La2Na2(PO4)6F2:Eu, Tb phosphors. RSC Adv. 6, 33990–33997 (2016)CrossRefGoogle Scholar
  23. 23.
    K. Boughzala, M. Debbichi, H. Njema, K. Bouzouita, Rietveld refinement, electronic structure and ionic conductivity of Sr4La6(SiO4)6F2 and Sr4La6(SiO4)6O ceramics. J. Solid State Chem. 239, 84–90 (2016)CrossRefGoogle Scholar
  24. 24.
    Q.F. Guo, L.B. Liao, M.S. Molokeev, L.F. Mei, H.K. Liu, Color tunable emission and energy transfer of Ce3+ and Tb3+ co-doped novel La6Sr4(SiO4)6F2 phosphors with apatite structure. Mater. Res. Bull. 72, 245–251 (2015)CrossRefGoogle Scholar
  25. 25.
    Z.W. Zhang, L. Shi, R.J. Lv, Z.H. Li, Z.J. Wang, M.Y. Zhang, H. Jiao, Luminescence properties of the NaLaMg0.92Ca0.08WO6: Sm3+ red phosphor, J. Mater. Sci.:Mater. Electron. 19, 1–7 ( 2017)Google Scholar
  26. 26.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)CrossRefGoogle Scholar
  27. 27.
    G.M. Rao, S.K. Hussain, G.S.R. Raju, P.S.V.S. Rao, Synthesis and characterizations of novel Sr2Gd8(SiO4)6O2:Eu3+oxyapatite phosphors for solid-state lighting and display applications. J. Alloys Compd. 660, 437–445 (2016)CrossRefGoogle Scholar
  28. 28.
    G.S.R. Raju, E. Pavitra, S.K. Hussain, D. Balaji, J.S Yu, Eu3+ ion concentration induced 3D luminescence properties of novel red-emitting Ba4La6(SiO4)O:Eu3+ oxy-apatite phosphors for versatile applications. J. Mater. Chem. C 4, 1039–1050 (2016)CrossRefGoogle Scholar
  29. 29.
    Y. Jin, J. Zhang, W. Qin, Photoluminescence properties of red phosphor Gd3PO7:Eu3+ for UV-pumped light-emitting diodes. J. Alloys Compd. 579, 263–266 (2013)CrossRefGoogle Scholar
  30. 30.
    R. Saraf, C. Shivakumara, S. Behera, H. Nagabhushana, N. Dhananjaya, Photoluminescence, photocatalysis and Judd-Ofelt analysis of Eu3+-activated layered BiOCl phosphors. RSC Adv. 5, 4109–4120 (2014)CrossRefGoogle Scholar
  31. 31.
    G.R. Dillip, B. Deva Prasad Raju, A study of the luminescence in near UV-pumped red-emitting novel Eu3+-doped Ba3Ca3(PO4)4 phosphors for white light emitting diodes. J. Alloys Compd. 540, 67–74 (2012)CrossRefGoogle Scholar
  32. 32.
    M. Yu, J. Lin, Y.H. Zhou, S.B. Wang, H.J. Zhang, Sol–gel deposition and luminescent properties of oxyapatite Ca2(Y,Gd)8(SiO4)6O2 phosphor films doped with rare earth and lead ions. J. Mater. Chem. 12, 86–91 (2002)CrossRefGoogle Scholar
  33. 33.
    Y.W. Liu, Z.J. Wang, J.P. Zhong, F.J. Pan, H.B. Liang, Z.G. Xiao, Synthesis and photoluminescence properties of red-emitting phosphors Ba2Gd8(SiO4)6O2:Eu3+. Mater. Lett. 129, 130–133 (2014)CrossRefGoogle Scholar
  34. 34.
    Z.J. Wang, P.L. Li, Z.P. Yang, Q.L. Guo, Luminescent property of a novel red emitting phosphor Ca4Y6O(SiO4)6:Eu3+. Mater. Lett. 126, 89–91 (2014)CrossRefGoogle Scholar
  35. 35.
    C. Peng, G.G. Li, Z.Y. Hou, M.M. Shang, J. Lin, Electrospinning synthesis and luminescent properties of one-dimensional Ca2Gd8(SiO4)6O2:Eu3+ microfibers and microbelts. Mater. Chem. Phys. 136, 1008–1014 (2012)CrossRefGoogle Scholar
  36. 36.
    Lü W, Lv W, Zhao Q et al., A novel efficient Mn4+ activated Ca14Al10Zn6O35 phosphor: application in red-emitting and white LEDs. Inorg. Chem.; 53(22), 11985–11990 (2014)CrossRefGoogle Scholar
  37. 37.
    B. Li, X. Huang, H. Guo et al., Energy transfer and tunable photoluminescence of LaBWO6:Tb3+, Eu3+ phosphors for near-UV white LEDs. Dyes Pigments 150, 67–72 (2018)CrossRefGoogle Scholar
  38. 38.
    J. Zhong, D. Chen, H. Xu et al., Red-emitting CaLa4(SiO4)3O:Eu3+ phosphor with superior thermal stability and high quantum efficiency for warm w-LEDs. J. Alloys Compd. 695, 311–318 (2017)CrossRefGoogle Scholar
  39. 39.
    H. Guo, X. Huang, Y. Zeng, Synthesis and photoluminescence properties of novel highly thermal-stable red-emitting Na3Sc2(PO4)3:Eu3+, phosphors for UV-excited white-light-emitting diodes. J. Alloys Compd. 741, 300–306 (2018)CrossRefGoogle Scholar
  40. 40.
    L.Y. Zhou, L.H. Yi, R.F. Sun, F.Z. Gong, J.H. Sun, A potential red phosphor Na0.5Gd0.5MoO4:Eu3+ for light-emitting diode application. J. Am. Ceram. Soc. 91, 3416–3418 (2008)CrossRefGoogle Scholar
  41. 41.
    B. Wang, H. Lin, J. Xu et al., CaMg2Al16O27:Mn4+-based red phosphor: a potential color converter for high-powered warm W-LED. ACS Appl. Mater. Interfaces 6(24), 22905–22913 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical Engineering CollegeHebei Normal University of Science and TechnologyQinhuangdaoChina

Personalised recommendations