Effects of lithium doping on: microstructure, morphology, nanomechanical properties and corrosion behaviour of ZnO thin films grown by spray pyrolysis technique

  • Mohamed Salah
  • Samir AziziEmail author
  • Abdelwaheb Boukhachem
  • Chokri Khaldi
  • Mosbah Amlouk
  • Jilani Lamloumi


Li-doped ZnO thin films were prepared on glass substrate by a chemical spray pyrolysis method, in the temperature of 460 °C. The effects of Li content on the microstructural, morphological and mechanical characteristics of the doped (ZnO:Li) thin films were also examined. The XRD study showed a sharp preferred c-axis orientation and showed that (ZnO:Li) films have a würtzite structure and grow principally along the c-axis orientation with a preferred orientation (002). The film morphology was examined by (AFM) and (SEM). Results of SEM observations showed that sprayed thin films, exhibited uniform and harmonious texture. Furthermore, ZnO:Li thin films revealed uniform and spherical shaped crystallites with an approximate medium size of 200 nm. AFM characterization demonstrated an amelioration of the surface roughness of the ZnO:Li thin films. The mechanical characteristics of ZnO:Li thin films have been investigated by the nano-indentation experiment. It has been found that the addition of lithium enhances the hardness and Young’s modulus. On the other hand, the corrosion behaviour of Li-doped thin films is examined in chloride solutions. The electrochemical experiments confirmed that the lithium doping could ameliorate the anti-corrosion performance.


  1. 1.
    M. Hála, H. Kato, M. Algasinger, Y. Inoue, G. Rey, F. Werner, C. Schubbert, T. Dalibor, S. Siebentritt, Improved environmental stability of highly conductive nominally undoped ZnO layers suitable for n-type windows in thin film solar cells. Sol. Energy Mater. Sol. Cells 161, 232–239 (2017)Google Scholar
  2. 2.
    R. Mohan, S. Snega, K. Ravichandran, S. Vadivel, Fabrication of double cation (Sn + Mg) activated ZnO thin films for environmental and health care applications. J. Mater. Sci.: Mater. Electron. 28, 4414–4423 (2017)Google Scholar
  3. 3.
    H. Nouri, A. Habibi-Yangjeh, Microwave-assisted method for preparation of Zn1–xMgxO nanostructures and their activities for photodegradation of methylene blue. Adv. Powder Technol. 25, 1016–1025 (2014)Google Scholar
  4. 4.
    R. Mimouni, A. Souissi, A. Madouri, K. Boubaker, M. Amlouk, High photocatalytic efficiency and stability of chromium-indium codoped ZnO thin films under sunlight irradiation for water purification development purposes. Curr. Appl. Phys. 17, 1058–1065 (2017)Google Scholar
  5. 5.
    F. Jia, Q. Wang, D.L. Zhu, S. Han, P.J. Cao, W.J. Liu, Y.X. Zeng, Y.M. Lu, Influence of ZnO buffer layers on the optoelectronic properties in Ga-doped ZnO thin films prepared by RF magnetron sputtering on PET substrates. J. Mater. Sci.: Mater. Electron. 25, 2934–2938 (2014)Google Scholar
  6. 6.
    M. Kahouli, N. Tounsi, N. Mzabi, H. Guermazi, S. Guermazi, Enhanced structural and optical properties of ZnO nanopowder with tailored visible luminescence as a function of sodium hydroxide to zinc sulfate mass ratio. Adv. Powder Technol. 29, 325–332 (2018)Google Scholar
  7. 7.
    C.M. Mahajan, M.G. Takwale, An influence of deposition temperature on structural, optical and electrical properties of sprayed ZnO thin films of identical thickness. Curr. Appl. Phys. 13, 2109–2116 (2013)Google Scholar
  8. 8.
    D. Berger, A.P. de Moura, L.H. Oliveira, W.B. Bastos, F.A. La Porta, I.L.V. Rosa, M.S. Li, S.M. Tebcherani, E. Longo, J.A. Varela, Improved photoluminescence emission and gas sensor properties of ZnO thin films. Ceram. Int. 42, 13555–13561 (2016)Google Scholar
  9. 9.
    L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review, Sens. Actuators A (2017). Google Scholar
  10. 10.
    M.T. Hosseinnejad, M. Shirazi, M. Ghoranneviss, M.R. Hantehzadeh, E. Darabi, Preparation of nanostructured ZnO thin films using magnetron sputtering for the gas sensors applications. J. Inorg. Organomet. Polym. Mater. 26, 405–412 (2016)Google Scholar
  11. 11.
    Y. Abdi, S.M. Jebreiil Khadem, P. Afzali, Resonantly excited ZnO nanowires for fabrication of high sensitivity gas sensor. Curr. Appl. Phys. 14, 227–231 (2014)Google Scholar
  12. 12.
    F.Z. Ghomrani, A. Aissat, H. Arbouz, A. Benkouider, Al concentration effect on ZnO based thin films: for photovoltaic applications. Energy Procedia 74, 491–498 (2015)Google Scholar
  13. 13.
    W.-J. Huang, S.A. De Valle, J.B. Kana Kana, K. Simmons-Potter, B.G. Potter, Integration of CdTe–ZnO nanocomposite thin films into photovoltaic devices. Sol. Energy Mater. Sol. Cells 137, 86–92 (2015)Google Scholar
  14. 14.
    A. Arunachalam, S. Dhanapandian, M. Rajasekaran, Morphology controllable flower like nanostructures of Ag doped ZnO thin films and its application as photovoltaic material. J. Anal. Appl. Pyrol. 123, 107–117 (2017)Google Scholar
  15. 15.
    W. Yang, Y. Wang, Q. Zhen, W. Shi, Effect of growth time on morphology and photovoltaic properties of ZnO nanowire array films. Rare Met. 30, 676–680 (2011)Google Scholar
  16. 16.
    Y. Huang, X. Liu, L. Lu, J. Fang, H. Ni, Z. Ji, Preparation and characterization of ZnO/SnO2 composite thin films as high-capacity anode for lithium-ion batteries. Appl. Phys. A 120, 519–524 (2015)Google Scholar
  17. 17.
    D. Xu, S. Yin, X. Zeng, S. Yang, X. Wen, Structural, optical and electrical properties of ZnO: B thin films with different thickness for bifacial a-Si:H/c-Si heterojunction solar cells. Front. Optoelectron. 10, 31–37 (2017)Google Scholar
  18. 18.
    X. Ren, W. Zi, Q. Ma, F. Xiao, F. Gao, S. Hu, Y. Zhou, S. Liu, Topology and texture controlled ZnO thin film electrodeposition for superior solar cell efficiency. Sol. Energy Mater. Sol. Cells 134, 54–59 (2015)Google Scholar
  19. 19.
    M.C. Kao, H.Z. Chen, S.L. Young, Effects of preannealing temperature of ZnO thin films on the performance of dye-sensitized solar cells. Appl. Phys. A 98, 595–599 (2010)Google Scholar
  20. 20.
    S.-Y. Lee, T. Hwang, S. Lee, W. Lee, B. Lee, J. Kim, S. Kim, H. Lee, H.-M. Lee, B. Park, Nanoroughness control of Al-Doped ZnO for high efficiency Si thin-film solar cells. Curr. Appl. Phys. 15, 1353–1357 (2015)Google Scholar
  21. 21.
    W. Qin, T. Li, Y. Li, J. Qiu, X. Ma, X. Chen, X. Hu, W. Zhang, A high power ZnO thin film piezoelectric generator. Appl. Surf. Sci. 364, 670–675 (2016)Google Scholar
  22. 22.
    A.K. Singh, Synthesis, characterization, electrical and sensing properties of ZnO nanoparticles. Adv. Powder Technol. 21, 609–613 (2010)Google Scholar
  23. 23.
    W.-T. Chang, Y.-C. Chen, R.-C. Lin, C.-C. Cheng, K.-S. Kao, Y.-C. Huang, Wind-power generators based on ZnO piezoelectric thin films on stainless steel substrates. Curr. Appl. Phys. 11, S333–S338 (2011)Google Scholar
  24. 24.
    H. Wang, Y. Zhao, C. Wu, G. Wu, Y. Ma, X. Dong, B. Zhang, G. Du, Ultraviolet electroluminescence properties from devices based on n-ZnO/i-NiO/p-Si light-emitting diode. Opt. Commun. 395, 94–97 (2017)Google Scholar
  25. 25.
    O. Matsumoto, K. Miura, H. Kawaguchi, M. Sano, M. Saito, Y. Hirano, W. Kada, O. Hanaizumi, Fabrication of periodic microstructures for improving light-extraction efficiencies of light-emitting ZnO/Si devices. Results Phys. 7, 2965–2967 (2017)Google Scholar
  26. 26.
    H. Liang, Q. Feng, X. Xia, R. Li, H. Guo, K. Xu, P. Tao, Y. Chen, G. Du, Room temperature electroluminescence from arsenic doped p-type ZnO nanowires/n-ZnO thin film homojunction light-emitting diode. J. Mater. Sci.: Mater. Electron. 25, 1955–1958 (2014)Google Scholar
  27. 27.
    H.T. Cao, C. Sun, Z.L. Pei, A.Y. Wang, L.S. Wen, R.J. Hong, X. Jiang, Properties of transparent conducting ZnO: Al oxide thin films and their application for molecular organic light-emitting diodes. J. Mater. Sci.: Mater. Electron. 15, 169–174 (2004)Google Scholar
  28. 28.
    Y. Takao, M. Awano, M. Sando, SnO2 multilayered gas sensor with high selectivity prepared by an aerosol electrostatic process. Adv. Powder Technol. 9, 293–316 (1998)Google Scholar
  29. 29.
    Y.-H. Peng, G.-F. Huang, W.-Q. Huang, Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Adv. Powder Technol. 23, 8–12 (2012)Google Scholar
  30. 30.
    T. Choi, J.-S. Kim, J.H. Kim, Transparent nitrogen doped TiO2/WO3 composite films for self-cleaning glass applications with improved photodegradation activity. Adv. Powder Technol. 27, 347–353 (2016)Google Scholar
  31. 31.
    Y. Li, W. Li, M. Fang, X. Yao, C. Chen, M. Shui, J. Shu, Y. Ren, The preparation, performance and lithiation mechanism of cobalt-doped zinc oxide as a high performance anode material for LIB. Curr. Appl. Phys. 17, 1050–1057 (2017)Google Scholar
  32. 32.
    V. Tiron, I.-L. Velicu, D. Stanescu, H. Magnan, L. Sirghi, High visible light photocatalytic activity of nitrogen-doped ZnO thin films deposited by HiPIMS. Surf. Coat. Technol. 324, 594–600 (2017)Google Scholar
  33. 33.
    L.-C. Chao, J.-W. Chen, H.-C. Peng, C.-H. Ho, Characterization of nitrogen doped p-type ZnO thin films prepared by reactive ion beam sputter deposition. Surf. Coat. Technol. 231, 492–495 (2013)Google Scholar
  34. 34.
    G. Korotcenkov, B.K. Cho, M. Nazarov, D.Y. Noh, E.V. Kolesnikova, Cathodoluminescence studies of un-doped and (Cu, Fe, and Co)-doped tin dioxide films deposited by spray pyrolysis. Curr. Appl. Phys. 10, 1123–1131 (2010)Google Scholar
  35. 35.
    C. Guillén, J. Herrero, Structural and plasmonic characteristics of sputtered SnO2:Sb and ZnO:Al thin films as a function of their thickness. J. Mater. Sci. 51, 7276–7285 (2016)Google Scholar
  36. 36.
    K. Seomoon, J. Kim, S. Ju, P. Jang, K.-H. Kim, Inductively coupled plasma post-treatment of Al-doped ZnO thin films. Curr. Appl. Phys. 11, S30–S32 (2011)Google Scholar
  37. 37.
    E. Sarica, V. Bilgin, Structural, optical, electrical and magnetic studies of ultrasonically sprayed ZnO thin films doped with vanadium. Surf. Coat. Technol. 286, 1–8 (2016)Google Scholar
  38. 38.
    N. Srinatha, P. Raghu, H.M. Mahesh, B. Angadi, Spin-coated Al-doped ZnO thin films for optical applications: structural, micro-structural, optical and luminescence studies. J. Alloys Compd. 722, 888–895 (2017)Google Scholar
  39. 39.
    P.F.H. Inbaraj, J.J. Prince, Optical and structural properties of Mg doped ZnO thin films by chemical bath deposition method. J. Mater. Sci.: Mater. Electron. (2017). Google Scholar
  40. 40.
    S.-S. Lin, J.-L. Huang, P. Šajgalik, The properties of Ti-doped ZnO films deposited by simultaneous RF and DC magnetron sputtering. Surf. Coat. Technol. 191, 286–292 (2005)Google Scholar
  41. 41.
    A.O. Dikovska, D. Pallotti, S. Lettieri, G.B. Atanasova, G.V. Avdeev, P. Maddalena, S. Amoruso, N.N. Nedyalkov, Growth mechanism of ZnO nanostructures produced by ultraviolet and visible laser ablation. Appl. Surf. Sci. 423, 977–982 (2017)Google Scholar
  42. 42.
    İ Orak, The performances photodiode and diode of ZnO thin film by atomic layer deposition technique. Solid State Commun. 247, 17–22 (2016)Google Scholar
  43. 43.
    R. Pietruszka, B.S. Witkowski, S. Zimowski, T. Stapinski, M. Godlewski, Abrasion resistance of ZnO and ZnO:Al films on glass substrates by atomic layer deposition. Surf. Coat. Technol. 319, 164–169 (2017)Google Scholar
  44. 44.
    C.R. Kim, C.M. Shin, J.Y. Lee, J.H. Heo, T.M. Lee, J.H. Park, H. Ryu, C.S. Son, J.H. Chang, Influence of annealing duration on optical property and surface morphology of ZnO thin film grown by atomic layer deposition, Curr. Appl. Phys. 10, S294–S297 (2010)Google Scholar
  45. 45.
    V. Musat, B. Teixeira, E. Fortunato, R.C.C. Monteiro, P. Vilarinho, Al-doped ZnO thin films by sol–gel method. Surf. Coat. Technol. 180–181, 659–662 (2004)Google Scholar
  46. 46.
    M.M. Ba-Abbad, M.S. Takriff, A. Benamor, A.W. Mohammad, Synthesis and characterisation of Co2+-incorporated ZnO nanoparticles prepared through a sol-gel method. Adv. Powder Technol. 27, 2439–2447 (2016)Google Scholar
  47. 47.
    R. Mahdavi, S.S.A. Talesh, Sol-gel synthesis, structural and enhanced photocatalytic performance of Al doped ZnO nanoparticles. Adv. Powder Technol. 28, 1418–1425 (2017)Google Scholar
  48. 48.
    D. Guo, K. Sato, S. Hibino, T. Takeuchi, H. Bessho, K. Kato, Low-temperature preparation of transparent conductive Al-doped ZnO thin films by a novel sol–gel method. J. Mater. Sci. 49, 4722–4734 (2014)Google Scholar
  49. 49.
    K.J. Chen, F.Y. Hung, S.J. Chang, S.J. Young, Z.S. Hu, Effects of crystallization on the optical properties of ZnO nano-pillar thin films by sol-gel method. Curr. Appl. Phys. 11, 1243–1248 (2011)Google Scholar
  50. 50.
    S. Bae, D.-S. Kim, S. Jung, W.S. Jeong, J.E. Lee, S. Cho, J. Park, D. Byun, Bipolar switching behavior of ZnOx thin films deposited by metalorganic chemical vapor deposition at various growth temperatures. J. Electron. Mater. 44, 4175–4181 (2015)Google Scholar
  51. 51.
    J.H. Park, D. Byun, B.J. Jeon, J.K. Lee, Effect of hydrogen content on the ZnO thin films on the surface of polyethylene terephthalate substrate through electron cyclotron resonance-metal organic chemical vapor deposition. J. Mater. Sci. 43, 3417–3423 (2008)Google Scholar
  52. 52.
    A. Limmanee, P. Krudtad, S. Songtrai, C. Piromjit, J. Sritharathikhun, K. Sriprapha, ZnO back reflector prepared by MOCVD technique for flexible solar cell applications. Curr. Appl. Phys. 11, S206–S209 (2011)Google Scholar
  53. 53.
    A. Sreedhar, J.H. Kwon, J. Yi, J.S. Gwag, Effect of Ar ion-beam-assistance and substrate temperature on physical properties of Al-doped ZnO thin films deposited by RF magnetron sputtering. Mater. Res. Bull. 95, 451–458 (2017)Google Scholar
  54. 54.
    T.-H. Chen, B.-L. Jian, Optical and electronic properties of Mo:ZnO thin films deposited using RF magnetron sputtering with different process parameters. Opt. Quantum Electron. 48, 77 (2016)Google Scholar
  55. 55.
    S.-H. Lee, J.H. Jung, S.-H. Kim, D.-K. Lee, C.-W. Jeon, Effect of incident angle of target molecules on electrical property of Al-doped ZnO thin films prepared by RF magnetron sputtering, Curr. Appl. Phys. 10, S286–S289 (2010)Google Scholar
  56. 56.
    M. Ardyanian, N. Sedigh, Heavy lithium-doped ZnO thin films prepared by spray pyrolysis method. Bull. Mater. Sci. 37, 1309–1314 (2014)Google Scholar
  57. 57.
    P.V. Raghavendra, J.S. Bhat, N.G. Deshpande, Enhancement of photoluminescence in Sr doped ZnO thin films prepared by spray pyrolysis. Mater. Sci. Semicond. Process. 68, 262–269 (2017)Google Scholar
  58. 58.
    N. Kaneva, I. Stambolova, V. Blaskov, Y. Dimitriev, A. Bojinova, C. Dushkin, A comparative study on the photocatalytic efficiency of ZnO thin films prepared by spray pyrolysis and sol–gel method. Surf. Coat. Technol. 207, 5–10 (2012)Google Scholar
  59. 59.
    M.G. Ambia, M.N. Islam, M.O. Hakim, The effects of deposition variables on the spray pyrolysis of ZnO thin film. J. Mater. Sci. 29, 6575–6580 (1994)Google Scholar
  60. 60.
    N. Lehraki, M.S. Aida, S. Abed, N. Attaf, A. Attaf, M. Poulain, ZnO thin films deposition by spray pyrolysis: Influence of precursor solution properties. Curr. Appl. Phys. 12, 1283–1287 (2012)Google Scholar
  61. 61.
    M. Salah, S. Azizi, A. Boukhachem, C. Khaldi, M. Amlouk, J. Lamloumi, Structural, morphological, optical and photodetector properties of sprayed Li-doped ZnO thin films. J. Mater. Sci. 52, 10439–10454 (2017)Google Scholar
  62. 62.
    A. Amlouk, K. Boubaker, M. Amlouk, Effects of substrate temperature on sprayed ZnO thin films optical and morphological properties in terms of Amlouk–Boubaker opto-thermal expansivity ψAB. J. Alloys Compd. 482, 164–167 (2009)Google Scholar
  63. 63.
    A. Boukhachem, S. Fridjine, A. Amlouk, K. Boubaker, M. Bouhafs, M. Amlouk, Comparative effects of indium/ytterbium doping on, mechanical and gas-sensitivity-related morphological, properties of sprayed ZnO compounds. J. Alloys Compd. 501, 339–344 (2010)Google Scholar
  64. 64.
    M. Ardyanian, M.M. Bagheri-Mohagheghi, N. Sedigh, Determination of the optimal parameters for the fabrication of ZnO thin films prepared by spray pyrolysis method. Pramana 78, 625–634 (2012)Google Scholar
  65. 65.
    O. Kamoun, A. Boukhachem, A. Yumak, P. Petkova, K. Boubaker, M. Amlouk, Europium incorporation dynamics and some physical investigations within ZnO sprayed thin films. Mater. Sci. Semicond. Process. 43, 8–16 (2016)Google Scholar
  66. 66.
    A.S. Enigochitra, P. Perumal, C. Sanjeeviraja, D. Deivamani, M. Boomashri, Influence of substrate temperature on structural and optical properties of ZnO thin films prepared by cost-effective chemical spray pyrolysis technique. Superlattices Microstruct. 90, 313–320 (2016)Google Scholar
  67. 67.
    K. Boubaker, A. Chaouachi, M. Amlouk, H. Bouzouita, Enhancement of pyrolysis spray disposal performance using thermal time-response to precursor uniform deposition. Eur Phys. J.-Appl. Phys. 37, 105–109 (2007)Google Scholar
  68. 68.
    M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, The effects of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method. J. Mater. Sci.: Mater. Electron. 19, 704–708 (2008)Google Scholar
  69. 69.
    A. Rherari, M. Addou, M. Haris, Structural and optical characterization of (Sn/Li) co-doped ZnO thin films deposited by spray pyrolysis technique, J. Mater. Sci.: Mater. Electron. (2017). Google Scholar
  70. 70.
    F. Zahedi, R.S. Dariani, Effect of precursor concentration on structural and optical properties of ZnO microrods by spray pyrolysis. Thin Solid Films 520, 2132–2135 (2012)Google Scholar
  71. 71.
    A. Mosbah, A. Moustaghfir, S. Abed, N. Bouhssira, M.S. Aida, E. Tomasella, M. Jacquet, Comparison of the structural and optical properties of zinc oxide thin films deposited by d.c. and r.f. sputtering and spray pyrolysis. Surf. Coat. Technol. 200, 293–296 (2005)Google Scholar
  72. 72.
    X. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11–36 (2002)Google Scholar
  73. 73.
    N.L. Tarwal, V.M. Khot, N.S. Harale, S.A. Pawar, S.B. Pawar, V.B. Patil, P.S. Patil, Spray deposited superhydrophobic ZnO coatings via seed assisted growth. Surf. Coat. Technol. 206, 1336–1341 (2011)Google Scholar
  74. 74.
    M.A. Rahman, M.R. Phillips, C. Ton-That, Efficient multi-coloured Li-doped ZnO thin films fabricated by spray pyrolysis. J. Alloys Compd. 691, 339–342 (2017)Google Scholar
  75. 75.
    C. Moditswe, C.M. Muiva, A. Juma, Highly conductive and transparent Ga-doped ZnO thin films deposited by chemical spray pyrolysis. Opt.-Int. J. Light Electron Opt. 127, 8317–8325 (2016)Google Scholar
  76. 76.
    R. Swapna, M.S. Kumar, Growth and characterization of molybdenum doped ZnO thin films by spray pyrolysis. J. Phys. Chem. Solids 74, 418–425 (2013)Google Scholar
  77. 77.
    S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Photoelectrochemical properties of highly mobilized Li-doped ZnO thin films. J. Photochem. Photobiol. B 120, 1–9 (2013)Google Scholar
  78. 78.
    B.D. Cullity, J.W. Weymouth, Elements of X-ray diffraction. Am. J. Phys. 25, 394–395 (1957)Google Scholar
  79. 79.
    M. Rouchdi, E. Salmani, B. Fares, N. Hassanain, A. Mzerd, Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study. Results in Physics 7, 620–627 (2017)Google Scholar
  80. 80.
    A.J. Kulandaisamy, V. Elavalagan, P. Shankar, G.K. Mani, K.J. Babu, J.B.B. Rayappan, Nanostructured cerium-doped ZnO thin film—a breath sensor. Ceram. Int. 42, 18289–18295 (2016)Google Scholar
  81. 81.
    R. Mimouni, O. Kamoun, A. Yumak, A. Mhamdi, K. Boubaker, P. Petkova, M. Amlouk, Effect of Mn content on structural, optical, opto-thermal and electrical properties of ZnO:Mn sprayed thin films compounds. J. Alloys Compd. 645, 100–111 (2015)Google Scholar
  82. 82.
    G. Turgut, E. Sönmez, A study of Pb-doping effect on structural, optical, and morphological properties of ZnO thin films deposited by sol–gel spin coating. Metall Mater. Trans. A 45, 3675–3685 (2014)Google Scholar
  83. 83.
    C. Mrabet, O. Kamoun, A. Boukhachem, M. Amlouk, T. Manoubi, Some physical investigations on hexagonal-shaped nanorods of lanthanum-doped ZnO. J. Alloys Compd. 648, 826–837 (2015)Google Scholar
  84. 84.
    G. Srinivasan, R.T. Rajendra Kumar, J. Kumar, Li doped and undoped ZnO nanocrystalline thin films: a comparative study of structural and optical properties. J. Sol-Gel. Sci. Technol. 43, 171–177 (2007)Google Scholar
  85. 85.
    T.P. Rao, M. Santhoshkumar, Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis. Appl. Surf. Sci. 255, 4579–4584 (2009)Google Scholar
  86. 86.
    T.P. Rao, M.S. Kumar, S.A. Angayarkanni, M. Ashok, Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis. J. Alloys Compd. 485, 413–417 (2009)Google Scholar
  87. 87.
    L. Zhang, J. Huang, J. Yang, K. Tang, B. Ren, S. Zhang, L. Wang, The effects of substrate temperature on properties of B and Ga co-doped ZnO thin films grown by RF magnetron sputtering. Surf. Coat. Technol. 307, 1129–1133 (2016)Google Scholar
  88. 88.
    K. Ravichandran, N. Chidhambaram, S. Gobalakrishnan, Copper and graphene activated ZnO nanopowders for enhanced photocatalytic and antibacterial activities. J. Phys. Chem. Solids 93, 82–90 (2016)Google Scholar
  89. 89.
    S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, Structural, optical and electrical properties of F-doped ZnO nanorod semiconductor thin films deposited by sol–gel process. Appl. Surf. Sci. 255, 2353–2359 (2008)Google Scholar
  90. 90.
    C. Ravichandran, G. Srinivasan, C. Lennon, S. Sivananthan, J. Kumar, Influence of post-deposition annealing on the structural, optical and electrical properties of Li and Mg co-doped ZnO thin films deposited by sol–gel technique. Superlattices Microstruct. 49, 527–536 (2011)Google Scholar
  91. 91.
    M. Shaban, A. El Sayed, Effects of lanthanum and sodium on the structural, optical and hydrophilic properties of sol–gel derived ZnO films: a comparative study. Mater. Sci. Semicond. Process. 41, 323–334 (2016)Google Scholar
  92. 92.
    J. Floro, S. Hearne, J. Hunter, P. Kotula, E. Chason, S. Seel, C. Thompson, The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films. J. Appl. Phys. 89, 4886–4897 (2001)Google Scholar
  93. 93.
    T.A. Vijayan, R. Chandramohan, S. Valanarasu, J. Thirumalai, S.P. Subramanian, Comparative investigation on nanocrystal structure, optical, and electrical properties of ZnO and Sr-doped ZnO thin films using chemical bath deposition method. J. Mater. Sci. 43, 1776–1782 (2008)Google Scholar
  94. 94.
    K. Meziane, A. Elhichou, A. Elhamidi, A. Almaggoussi, M. Chhiba, Synthesis of lithium doped zinc oxide by sol gel. J. Phys.: Conf. Ser. 758, 012019 (2016)Google Scholar
  95. 95.
    S. Majumdar, P. Banerji, Effect of Li incorporation on the structural and optical properties of ZnO. Superlattices Microstruct. 45, 583–589 (2009)Google Scholar
  96. 96.
    R. Krithiga, S. Sankar, G. Subhashree, Augmentation of band gap and photoemission in ZnO by Li doping. J. Mater. Sci.: Mater. Electron. 25, 5201–5207 (2014)Google Scholar
  97. 97.
    C. Mrabet, N. Mahdhi, A. Boukhachem, M. Amlouk, T. Manoubi, Effects of surface oxygen vacancies content on wettability of zinc oxide nanorods doped with lanthanum. J. Alloys Compd. 688, 122–132 (2016)Google Scholar
  98. 98.
    V. Bornand, A. Mezy, Morphological and ferroelectric studies of Li-doped ZnO thin films. Mater. Lett. 107, 357–360 (2013)Google Scholar
  99. 99.
    Y. Narendar, G.L. Messing, Mechanisms of phase separation in gel-based synthesis of multicomponent metal oxides. Catal. Today 35, 247–268 (1997)Google Scholar
  100. 100.
    V. Bhardwaj, R. Chowdhury, R. Jayaganthan, Nanomechanical and microstructural characterization of sputter deposited ZnO thin films. Appl. Surf. Sci. 389, 1023–1032 (2016)Google Scholar
  101. 101.
    S.-R. Jian, J.S.-C. Jang, G.-J. Chen, H.-G. Chen, Y.-T. Chen, Nanoindentation on a-plane ZnO thin films. J. Alloys Compd. 479, 348–351 (2009)Google Scholar
  102. 102.
    S.-R. Jian, Pop-in effects and dislocation nucleation of c-plane single-crystal ZnO by Berkovich nanoindentation. J. Alloys Compd. 644, 54–58 (2015)Google Scholar
  103. 103.
    S.-R. Jian, Y.-H. Lee, Nanoindentation-induced interfacial fracture of ZnO thin films deposited on Si(111) substrates by atomic layer deposition. J. Alloys Compd. 587, 313–317 (2014)Google Scholar
  104. 104.
    W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)Google Scholar
  105. 105.
    X. Pang, H. Ma, K. Gao, H. Yang, X. Wu, A.A. Volinsky, Fracture toughness and adhesion of transparent Al: ZnO films deposited on glass substrates. J. Mater. Eng. Perform. 22, 3161–3167 (2013)Google Scholar
  106. 106.
    S.-R. Jian, I.-J. Teng, P.-F. Yang, Y.-S. Lai, J.-M. Lu, J.-G. Chang, S.-P. Ju, Surface morphological and nanomechanical properties of PLD-derived ZnO thin films. Nanoscale Res. Lett. 3, 186 (2008)Google Scholar
  107. 107.
    S.R. Jian, G.J. Chen, S.K. Wang, T.C. Lin, J.S.C. Jang, J.Y. Juang, Y.S. Lai, J.Y. Tseng, Rapid thermal annealing effects on the structural and nanomechanical properties of Ga-doped ZnO thin films. Surf. Coat. Technol. 231, 176–179 (2013)Google Scholar
  108. 108.
    M. Bobji, S. Biswas, J. Pethica, Effect of roughness on the measurement of nanohardness—a computer simulation study. Appl. Phys. Lett. 71, 1059–1061 (1997)Google Scholar
  109. 109.
    H. Zheng, R.-J. Zhang, J.-P. Xu, S.-X. Wang, T.-N. Zhang, Y. Sun, Y.-X. Zheng, S.-Y. Wang, X. Chen, L.-Y. Chen, Thickness-dependent optical constants and annealed phase transitions of ultrathin ZnO films. J. Phys. Chem. C 120, 22532–22538 (2016)Google Scholar
  110. 110.
    S.-K. Wang, T.-C. Lin, S.-R. Jian, J.-Y. Juang, J.S.-C. Jang, J.-Y. Tseng, Effects of post-annealing on the structural and nanomechanical properties of Ga-doped ZnO thin films deposited on glass substrate by rf-magnetron sputtering. Appl. Surf. Sci. 258, 1261–1266 (2011)Google Scholar
  111. 111.
    J. Schiøtz, T. Vegge, F. Di Tolla, K.W. Jacobsen, Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys. Rev. B 60, 11971 (1999)Google Scholar
  112. 112.
    Z. Chai, X. Lu, D. He, Atomic layer deposition of zinc oxide films: effects of nanocrystalline characteristics on tribological performance. Surf. Coat. Technol. 207, 361–366 (2012)Google Scholar
  113. 113.
    M. Stern, A.L. Geary, Electrochemical polarization I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc. 104, 56–63 (1957)Google Scholar
  114. 114.
    E. G-Berasategui, C. Zubizarreta, R. Bayón, J. Barriga, R. Barros, R. Martins, E. Fortunato, Study of the optical, electrical and corrosion resistance properties of AZO layers deposited by DC pulsed magnetron sputtering. Surf. Coat. Technol. 271, 141–147 (2015)Google Scholar
  115. 115.
    M.M. Khalaf, H.M. Abd El-Lateef, Corrosion protection of mild steel by coating with TiO2 thin films co-doped with NiO and ZrO2 in acidic chloride environments. Mater. Chem. Phys. 177, 250–265 (2016)Google Scholar
  116. 116.
    S. Azizi, M. Salah, H. Nefzi, C. Khaldi, F. Sediri, E. Dhahri, J. Lamloumi, Structure, volumetric adsorption method and electrochemical hydrogen storage properties of vanadium oxide nanotubes VOx-NTs. J. Alloys Compd. 648, 244–252 (2015)Google Scholar
  117. 117.
    H. Xu, W. Liu, L. Cao, G. Su, R. Duan, Preparation of porous TiO2/ZnO composite film and its photocathodic protection properties for 304 stainless steel. Appl. Surf. Sci. 301, 508–514 (2014)Google Scholar
  118. 118.
    Z. Sharifalhoseini, M.H. Entezari, Enhancement of the corrosion protection of electroless Ni–P coating by deposition of sonosynthesized ZnO nanoparticles. Appl. Surf. Sci. 351, 1060–1068 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohamed Salah
    • 1
  • Samir Azizi
    • 1
    Email author
  • Abdelwaheb Boukhachem
    • 2
  • Chokri Khaldi
    • 1
  • Mosbah Amlouk
    • 2
  • Jilani Lamloumi
    • 1
  1. 1.Université de Tunis, ENSIT, LR99ES05TunisTunisia
  2. 2.Faculté des Sciences de Tunis, Unité de Physique des Dispositifs à Semi-ConducteursUniversité de Tunis El ManarTunisTunisia

Personalised recommendations