Printed flexible bifunctional electrochemical urea-pH sensor based on multiwalled carbon nanotube/polyaniline electronic ink

  • Qiwen Bao
  • Zhengchun Yang
  • Yanfei Song
  • Meiying Fan
  • Peng PanEmail author
  • Jun LiuEmail author
  • Zhenyu LiaoEmail author
  • Jun Wei


Urea concentration and pH are two crucial parameters in food and clinical analysis. Traditional analytical methods of urea and pH determination are unsuitable for field and involve complex instrumentation or and enzyme-based assays. In this study, we used screen printing technology to prepare an electrochemical sensor with a carbon electrode modified by a multiwalled carbon nanotube/polyaniline (MWCNT/PANi) composite for the simultaneous detection of urea and pH. Urea was detected by a simple current–potential (IV) experiment and its concentration level on the MWCNT/PANi-modified screen-printed carbon electrode (SPCE) surface was determined by cyclic voltammetry. The MWCNT/PANi-modified SPCE had a linear response (R2 = 0.99902), lower detection limit, higher selectivity, and higher sensitivity than reported biosensors. Specifically, the detection limit was 10 µM and the sensitivity was 0.38 mA mM−1 cm−2 in the urea concentration range of 10–50 µM. Chronoamperometry was applied to investigate the changes in voltage on the MWCNT/PANi-modified SPCE with varying solution pH. The sensor exhibited excellent linearity (R2 = 0.99089) and an average sensitivity of 20.63 mV/pH over a wide pH range of 2–11. Thus, the MWCNT/PANi-modified SPCE has a promising field application as a simple, bifunctional non-enzymatic sensor.



This work was supported by the National Natural Science Foundation of China (Grant No. 51502203), the Tianjin Young Overseas High-level Talent Plans (Grant No. 01001502), the Tianjin Science and Technology Foundation (Grant No. 17ZXZNGX00090) and Tianjin Development Program for Innovation and Entrepreneurship.


  1. 1.
    R. Sha, K. Komori, S. Badhulika, Electrochim. Acta 233, 44–51 (2017)CrossRefGoogle Scholar
  2. 2.
    A.A. Ibrahim, R. Ahmad, A. Umar, M.S. Al-Assiri, A.E. Al-Salami, R. Kumar, S.G. Ansari, S. Baskoutas, Biosens. Bioelectron. 98, 254–260 (2017)CrossRefGoogle Scholar
  3. 3.
    J. Kato, T. Koseki, Y. Aoki, A. Yamada, T. Tanaka, Anal. Sci. 29, 753–755 (2013)CrossRefGoogle Scholar
  4. 4.
    R. Mihajlovic, Z. Stanic, Anal. Chim. Acta 516, 61–66 (2004)CrossRefGoogle Scholar
  5. 5.
    A.V. Rebriiev, N.F. Starodub, Electroanalysis 16, 1891–1895 (2004)CrossRefGoogle Scholar
  6. 6.
    N. Shams, H.N. Lim, R. Hajian, N.A. Yusof, J. Abdullah, Y. Sulaiman, I. Ibrahim, N.M. Huang, A. Pandikumar, J. Appl. Electrochem. 46, 655–666 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Mondal, M.V. Sangaranarayanan, Sens. Actuator B 177, 478–486 (2013)CrossRefGoogle Scholar
  8. 8.
    G.J. Kalaivani, S.K. Suja, Appl. Surf. Sci. 449, 266–276 (2018)CrossRefGoogle Scholar
  9. 9.
    R.K. Srivastava, S. Srivastava, T.N. Narayanan, B.D. Mahlotra, R. Vajtai, P.M. Ajayan, A. Srivastava, ACS Nano 6, 168–175 (2012)CrossRefGoogle Scholar
  10. 10.
    S.G. Ansari, R. Wahab, Z.A. Ansari, Y.-S. Kim, G. Khang, A. Al-Hajry, H.-S. Shin, Sens. Actuator B 137, 566–573 (2009)CrossRefGoogle Scholar
  11. 11.
    P. Salvo, N. Calisi, B. Melai, B. Cortigiani, M. Mannini, A. Caneschi, G. Lorenzetti, C. Paoletti, T. Lomonaco, A. Paolicchi, I. Scataglini, V. Dini, M. Romanelli, R. Fuoco, F. Di Francesco, Biosens. Bioelectron. 91, 870–877(2017)CrossRefGoogle Scholar
  12. 12.
    M. Simic, L. Manjakkal, K. Zaraska, G.M. Stojanovic, R. Dahiya, IEEE Sens. J. 17, 248–255 (2017)CrossRefGoogle Scholar
  13. 13.
    B. Kuswandi, A. Nurfawaidi, Food Control 82, 91–100(2017)CrossRefGoogle Scholar
  14. 14.
    R. Rahimi, M. Ochoa, T. Parupudi, X. Zhao, I.K. Yazdi, M.R. Dokmeci, A. Tamayol, A. Khademhosseini, B. Ziaie, Sens. Actuators B 229, 609–617 (2016)CrossRefGoogle Scholar
  15. 15.
    D. Shao, J. Hu, C.L. Chen, G. Sheng, X. Ren, X. Wang, J. Phys. Chem. C 114, 21524–21530 (2010)CrossRefGoogle Scholar
  16. 16.
    W. Su, J. Xu, X. Ding, IEEE Trans. Nanobiosci. 15, 812–819 (2016)CrossRefGoogle Scholar
  17. 17.
    S.H. Domingues, R.V. Salvatierra, M.M. Oliveirab, A.J.G. Zarbin, Chem. Commun. 47, 2592–2594 (2011)CrossRefGoogle Scholar
  18. 18.
    L.J. Bai, Y.H. Chen, Y. Bai, Y.J. Chen, J. Zhou, A.L. Huang, Biomaterials 133, 11–19 (2017)CrossRefGoogle Scholar
  19. 19.
    A. Jedrzak, T. Rebis, M. Nowicki, K. Synoradzki, R. Mrowczynski, T. Jesionowski, Appl. Surf. Sci. 455, 455–464 (2018)CrossRefGoogle Scholar
  20. 20.
    F. Criscuolo, I. Taurino, F. Stradolini, S. Carrara, G. De Micheli, Anal. Chim. Acta 1027, 22–32 (2018)CrossRefGoogle Scholar
  21. 21.
    Q. Lin, X.M. Jiang, X.Q. Ma, J. Liu, H. Yao, Y.M. Zhang, T.B. Wei, Sens. Actuators B 272, 139–145 (2018)CrossRefGoogle Scholar
  22. 22.
    J.D. Wang, X.Y. Wang, H.S. Tang, S.Q. He, Z.H. Gao, R.X. Niu, Y. Zheng, S.M. Han, Sens. Actuators B 272, 146–150 (2018)CrossRefGoogle Scholar
  23. 23.
    L. Guadarrama-Fernandez, M. Novell, P. Blondeau, F.J. Andrade, Food Chem. 265, 64–69 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Jia, C. Bian, J. Sun, J. Tong, S. Xia, Biosens. Bioelectron. 114, 15–21 (2018)CrossRefGoogle Scholar
  25. 25.
    Y. Xu, Y. Chen, W.F. Fu, Appl. Catal. B 236, 176–183 (2018)CrossRefGoogle Scholar
  26. 26.
    A.A. Ensafi, P. Nasr-Esfahani, B. Rezaei, Sens. Actuators B 270, 192–199 (2018)CrossRefGoogle Scholar
  27. 27.
    C.Q. Lia, Z.M. Sun, A.K. Song, X.B. Dong, S.L. Zheng, D.D. Dionysiou, Appl. Catal. B 236, 76–87 (2018)CrossRefGoogle Scholar
  28. 28.
    S. Bietti, F.B. Basset, D. Scarpellini, A. Fedorov, A. Ballabio, L. Esposito, M. Elborg, T. Kuroda, A. Nemcsica, L. Toth, C. Manzoni, C. Vozzi, S. Sanguinetti, Nanotechnology (2018). Google Scholar
  29. 29.
    F. Yang, Y. Liang, L.X. Liu, Q. Zhu, W.H. Wang, X.T. Zhu, J.D. Guo, Front. Phys. (2018). Google Scholar
  30. 30.
    V. Ball, R.J. Toh, N.H. Voelcker, H. Thissen, R.A. Evans, Colloids Surf. A 552, 124–129 (2018)CrossRefGoogle Scholar
  31. 31.
    X.M. Song, C.X. Yuan, Y.M. Wang, B.X. Wang, H. Mao, S.Y. Wu, Y. Zhang, Appl. Surf. Sci. 455, 181–186 (2018)CrossRefGoogle Scholar
  32. 32.
    S. Kuk, H.K. Nam, Z. Wang, D.J. Hwang, J. Nanosci. Nanotechnol. 18, 7085–7089 (2018)CrossRefGoogle Scholar
  33. 33.
    S.J. Liu, H.J. Li, L.L. Zhang, D. Hu, Q. Liu, Appl. Surf. Sci. 455, 75–83 (2018)CrossRefGoogle Scholar
  34. 34.
    Y. Pan, H.T. Zhao, J. Appl. Polym. Sci. (2018). Google Scholar
  35. 35.
    R.K. Pandey, H. Pandey, A. Nayak, Chem. Sel. 3, 5874–5882 (2018)Google Scholar
  36. 36.
    M.M. Makhlouf, A.S. Radwan, B. Ghazal, Appl. Surf. Sci. 452, 337–351 (2018)CrossRefGoogle Scholar
  37. 37.
    Y. Takano, K. Oyaizu, Mater. Lett. 228, 414–417 (2018)CrossRefGoogle Scholar
  38. 38.
    C. Casimero, A. McConville, J.J. Fearon, C.L. Lawrence, C.M. Taylor, R.B. Smith, J. Davis, Anal. Chim. Acta 1027, 1–8 (2018)CrossRefGoogle Scholar
  39. 39.
    J.W. Tu, Y. Gan, T. Liang, H. Wan, P. Wang, Sens. Actuators B 272, 582–588 (2018)CrossRefGoogle Scholar
  40. 40.
    T. Yao, W. Jia, X. Tong, Y. Feng, Y. Qi, X. Zhang, J. Wu, J. Colloid Interface Sci. 527, 214–221 (2018)CrossRefGoogle Scholar
  41. 41.
    W.B. Yu, T.T. Zhang, M.F. Ma, C.C. Chen, X. Liang, K. Wen, Z.H. Wang, J.Z. Shen, Anal. Chim. Acta 1027, 130–136 (2018)CrossRefGoogle Scholar
  42. 42.
    N.R. Tanguy, M. Thompson, N. Yan, Sens. Actuators B 257, 1044–1064 (2018)CrossRefGoogle Scholar
  43. 43.
    Z. Wang, C. Zhao, T. Han, Y. Zhang, S. Liu, T. Fei, G. Lu, T. Zhang, Sens. Actuators B 242, 269–279 (2016)CrossRefGoogle Scholar
  44. 44.
    X.F. Lu, H. Mao, D.M. Chao, W.J. Zhang, Y. Wei, Macromol. Chem. Phys. 207, 2142–2152 (2006)CrossRefGoogle Scholar
  45. 45.
    J. Shen, C. Yang, X. Li, G. Wang, ACS Appl. Mater. Interfaces 5, 8467–8476 (2013)CrossRefGoogle Scholar
  46. 46.
    M. Zhybak, V. Beni, M.Y. Vagin, E. Dempsey, A.P.F. Turner, Y. Korpan, Biosens. Bioelectron. 77, 505–511 (2016)CrossRefGoogle Scholar
  47. 47.
    V. Kumar, A. Chopra, S. Arora, S. Yadav, S. Kumar, I. Kaur, RSC Adv. 5, 13278–13284 (2015)CrossRefGoogle Scholar
  48. 48.
    W. Jia, L. Su, Y. Lei, Biosens. Bioelectron. 30, 158–164 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical and Electronic Engineering, Tianjin Key Laboratory of Film Electronic & Communication Devices, Advanced Materials and Printed Electronics CenterTianjin University of TechnologyTianjinChina
  2. 2.Pony Testing International GroupTianjinChina
  3. 3.Tianjin Food Safety Inspection Technology InstituteTianjinChina
  4. 4.Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore

Personalised recommendations