Advertisement

One step to prepare CNTs modified porous g-C3N4 with excellent visible-light photocatalytic performance

  • Lei ShiEmail author
  • Lizhu Yao
  • Weiwei Si
Article
  • 51 Downloads

Abstract

A kind of carbon nanotubes (CNTs) modified porous graphitic carbon nitride (CNTs/pg-C3N4) photocatalyst was successfully synthesized via one step thermal polycondensation and completely measured by some instruments, such as XRD, FTIR, TEM, BET, DRS, PL, etc. And the relevant experimental data indicated that loaded CNTs could be beneficial to the photoinduced charges transfer, facilitating photoinduced charge separation rate. Meanwhile, surface area and visible light adsorption of CNTs/pg-C3N4 photocatalyst could be increased and improved. These synergetic effects resulted in the as-synthesized CNTs/pg-C3N4 photocatalyst exhibiting better visible-light-induced photocatalytic performance for organic pollutant degradation and the product of clean energy than bulk g-C3N4, pg-C3N4 and CNTs modified bulk g-C3N4, and excellent stable photocatalytic performance was also observed after several recycling experiments. Finally, a reasonable improved photocatalytic reaction mechanism for CNTs/pg-C3N4 photocatalyst is presented.

Notes

Acknowledgements

We sincerely acknowledge the financial supported by talent scientific research fund of LSHU (No. 2016XJJ-080), basic research projects of Liaoning Provincial Education Department (L2017LQN004).

References

  1. 1.
    H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 43, 5234 (2014)CrossRefGoogle Scholar
  2. 2.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahneman, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  3. 3.
    W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116, 7159 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, J. Shi, C. Cheng, S. Zong, J. Geng, X. Guan, L. Guo, Appl. Catal. B 232, 268 (2018)CrossRefGoogle Scholar
  5. 5.
    Q.Z. Huang, Z.J. Tao, L.Q. Ye, H.C. Yao, Z.J. Li, Appl. Catal. B 237, 689 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Jin, J. Yu, D. Guo, C. Cui, W. Ho, Small 11, 5262 (2015)CrossRefGoogle Scholar
  7. 7.
    X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)CrossRefGoogle Scholar
  8. 8.
    M.A. Behnajady, N. Modirshahla, R. Hamzavi, J. Hazard. Mater. B 133, 226 (2006)CrossRefGoogle Scholar
  9. 9.
    A. Tanaka, K. Hashimoto, H. Kominami, J. Am. Chem. Soc. 136, 586 (2014)CrossRefGoogle Scholar
  10. 10.
    D. Jing, L. Guo, J. Phys. Chem. B 110, 11139 (2006)CrossRefGoogle Scholar
  11. 11.
    X. An, J.C. Yu, J. Tang, J. Mater. Chem. A 2, 1000 (2014)CrossRefGoogle Scholar
  12. 12.
    G. Chen, M. Sun, Q. Wei, Y. Zhang, B. Zhu, B. Du, J. Hazard. Mater. 244–245, 86 (2013)CrossRefGoogle Scholar
  13. 13.
    D. Xu, B. Cheng, S. Cao, J. Yu, Appl. Catal. B 164, 380 (2015)CrossRefGoogle Scholar
  14. 14.
    P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M. Whangbo, Angew. Chem. Int. Ed. 47, 7931 (2008)CrossRefGoogle Scholar
  15. 15.
    P. Wang, Y. Tang, Z. Dong, Z. Chen, T.T. Lim, J. Mater. Chem. A 1, 4718 (2013)CrossRefGoogle Scholar
  16. 16.
    L. Ye, Y. Su, X. Jin, H. Xie, C. Zhang, Environ. Sci.: Nano 1, 90 (2014)Google Scholar
  17. 17.
    S. Sun, W. Wang, L. Zhang, L. Zhou, W. Yin, M. Shang, Environ. Sci. Technol. 43, 2005 (2009)CrossRefGoogle Scholar
  18. 18.
    J. Di, J. Xia, M. Ji, S. Yin, H. Li, H. Xu, Q. Zhang, H. Li, J. Mater. Chem. A 3, 15108 (2015)CrossRefGoogle Scholar
  19. 19.
    X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domenet, M. Antonietti, Nat. Mater. 8, 76 (2009)CrossRefGoogle Scholar
  20. 20.
    J. Hong, X. Xia, Y. Wang, R. Xu, J. Mater. Chem. 22, 15006 (2012)CrossRefGoogle Scholar
  21. 21.
    J. Ran, T.Y. Ma, G. Gao, X.W. Du, S.Z. Qiao, Energy Environ. Sci. 8, 370 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Kumar, T. Surendar, A. Baruah, V. Shanker, J. Mater. Chem. A 1, 5333 (2013)CrossRefGoogle Scholar
  23. 23.
    X.J. Wang, Q. Wang, F.T. Li, W.Y. Yang, Y. Zhao, Y.J. Hao, S.J. Liu, Chem. Eng. J. 234, 361 (2013)CrossRefGoogle Scholar
  24. 24.
    C. Xing, Z. Wu, D. Jiang, M. Chen, J. Colloid Interface Sci. 433, 9 (2014)CrossRefGoogle Scholar
  25. 25.
    Z. Wang, W. Guan, Y. Sun, F. Dong, Y. Zhou, W.K. Ho, Nanoscale 7, 2471 (2015)CrossRefGoogle Scholar
  26. 26.
    S.C. Lee, H.O. Lintang, L. Yuliati, Chem. Asian J. 7, 2139 (2012)CrossRefGoogle Scholar
  27. 27.
    L. Shi, L. Liang, F. Wang, M. Liu, K. Chen, K. Sun, N. Zhang, J. Sun, ACS Sustain. Chem. Eng. 3, 3412 (2015)CrossRefGoogle Scholar
  28. 28.
    G. Peng, L. Xing, J. Barrio, M. Volokh, M. Shalom, Angew. Chem. Int. Ed. 57, 1186 (2018)CrossRefGoogle Scholar
  29. 29.
    C. Zhou, C. Lai, D. Huang, G. Zeng, C. Zhang, M. Cheng, L. Hu, J. Wan, W. Xiong, M. Wen, X. Wen, L. Qin, Appl. Catal. B 220, 202 (2018)CrossRefGoogle Scholar
  30. 30.
    M. Peer, M. Lusardi, K.F. Jensen, Chem. Mater. 29, 1496 (2017)CrossRefGoogle Scholar
  31. 31.
    P. Kumar, R. Boukherroub, K. Shankar, J. Mater. Chem. A 6, 12876 (2018)CrossRefGoogle Scholar
  32. 32.
    N.C.T. Martins, J. Ângelo, A.V. Girão, T. Trindade, L. Andrade, A. Mendes, Appl. Catal. B 193, 67 (2016)CrossRefGoogle Scholar
  33. 33.
    Y. Xu, S. Huang, H. Ji, L. Jing, M. He, H. Xu, Q. Zhang, H. Li, RSC Adv. 6, 6905 (2016)CrossRefGoogle Scholar
  34. 34.
    B. Li, T. Liu, Y. Wang, Z. Wang, J. Colloid Interface Sci. 377, 114 (2012)CrossRefGoogle Scholar
  35. 35.
    L. Ge, C. Han, Appl. Catal. B 117–118, 268 (2012)CrossRefGoogle Scholar
  36. 36.
    Q. Xiang, J. Yu, M. Jaroniec, J. Phys. Chem. C 115, 7355 (2011)CrossRefGoogle Scholar
  37. 37.
    B. Chai, X. Liao, F. Song, H. Zhou, Dalton Trans. 43, 982 (2014)CrossRefGoogle Scholar
  38. 38.
    J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.T. Lee, J. Zhong, Z.H. Kang, Science 347, 970 (2015)CrossRefGoogle Scholar
  39. 39.
    X. Bai, L. Wang, Y. Wang, W. Yao, Y. Zhu, Appl. Catal. B 152–153, 262 (2014)CrossRefGoogle Scholar
  40. 40.
    C. Liu, Y. Zhang, F. Dong, A.H. Reshak, L. Ye, N. Pinna, C. Zeng, T. Zhang, H. Huang, Appl. Catal. B 203, 465 (2017)CrossRefGoogle Scholar
  41. 41.
    W. Iqbal, C. Dong, M. Xing, X. Tan, J. Zhang, Catal. Sci. Technol. 7, 1726 (2017)CrossRefGoogle Scholar
  42. 42.
    L. Liang, Y. Cong, L. Yao, F. Wang, L. Shi, Mater. Res. Express 5, 115510 (2018)CrossRefGoogle Scholar
  43. 43.
    D. Wang, H. Sun, Q. Luo, X. Yang, R. Yin, Appl. Catal. B 156–157, 323 (2014)CrossRefGoogle Scholar
  44. 44.
    L. Ge, C. Han, X. Xiao, L. Guo, Int. J. Hydrog. Energy 38, 6960 (2013)CrossRefGoogle Scholar
  45. 45.
    L. Shi, J. Ma, L. Yao, L. Cui, W. Qi, J. Colloid Interface Sci. 519, 1 (2018)CrossRefGoogle Scholar
  46. 46.
    R. Zhang, M. Ma, Q. Zhang, F. Dong, Y. Zhou, Appl. Catal. B 235, 17 (2018)CrossRefGoogle Scholar
  47. 47.
    J. Yuan, X. Liu, Y. Tang, Y. Zeng, L. Wang, S. Zhang, T. Cai, Y. Liu, S. Luo, Y. Pei, C. Liu, Appl. Catal. B 237, 24 (2018)CrossRefGoogle Scholar
  48. 48.
    X. Lu, K. Xu, P. Chen, K. Jia, S. Liu, C. Wu, J. Mater. Chem. A 2, 18924 (2014)CrossRefGoogle Scholar
  49. 49.
    J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Pure Appl. Chem. 66, 1739 (1994)CrossRefGoogle Scholar
  50. 50.
    Z. Lu, C. Li, J. Han, L. Wang, S. Wang, L. Ni, Y. Wang, Appl. Catal. B 237, 919 (2018)CrossRefGoogle Scholar
  51. 51.
    P. Chen, L. Chen, Y. Zeng, F. Ding, X. Jiang, N. Liu, C.T. Au, S.F. Yin, Appl. Catal. B 234, 311 (2018)CrossRefGoogle Scholar
  52. 52.
    L. Shi, W. Si, F. Wang, W. Qi, RSC Adv. 8, 24500 (2018)CrossRefGoogle Scholar
  53. 53.
    J. Ma, L. Shi, L. Yao, Z. Wang, C. Lu, W. Qi, D. Su, ChemistrySelect 2, 8535 (2017)CrossRefGoogle Scholar
  54. 54.
    C. Hu, T. Peng, X. Hu, Y. Nie, X. Zhou, J. Qu, H. He, J. Am. Chem. Soc. 132, 857 (2010)CrossRefGoogle Scholar
  55. 55.
    N. Wang, L. Shi, L. Yao, C. Lu, Y. Shi, J. Sun, RSC Adv. 8, 537 (2018)CrossRefGoogle Scholar
  56. 56.
    D. Jiang, J. Zhu, M. Chen, J. Xie, J. Colloid Interface Sci. 417, 115 (2014)CrossRefGoogle Scholar
  57. 57.
    L. Shi, L. Liang, J. Ma, F.X. Wang, J.M. Sun, Catal. Sci. Technol. 4, 758 (2014)CrossRefGoogle Scholar
  58. 58.
    S.V.P. Vattikuti, P.A.K. Reddy, J. Shim, C. Byon, ACS Omega 3, 7587 (2018)CrossRefGoogle Scholar
  59. 59.
    S.V.P. Vattikuti, P.A.K. Reddy, J. Shim, C. Byon, J. Mater. Sci.: Mater. Electron. 29, 18760 (2018)Google Scholar
  60. 60.
    S.V.P. Vattikuti, S. Shome, G. Koyyada, J. Shima, J.H. Jung, Mater. Res. Bull. 107, 446 (2018)CrossRefGoogle Scholar
  61. 61.
    S.V.P. Vattikuti, C. Byon, Mater. Res. Bull. 96, 233 (2017)CrossRefGoogle Scholar
  62. 62.
    P.C. Nagajyothi, M. Pandurangan, S.V.P. Vattikuti, C.O. Tettey, T.V.M. Sreekanth, J. Shim, Sep. Purif. Technol. 188, 228 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and Environmental EngineeringLiaoning Shihua UniversityFushunChina

Personalised recommendations