Advertisement

Electrical and optical responses of composite films based on N,N-dimethylamino-4′-N′-methylstilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS)-graphene

  • Fei Teng
  • Dong Chen
  • Yuzhe Ma
  • Shaohua Ji
  • Jiaojiao Liu
  • Tianhua Wang
  • Jie Tang
  • Lifeng CaoEmail author
  • Bing TengEmail author
Article
  • 26 Downloads

Abstract

N,N-dimethylamino-4′-N′-methylstilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS)-graphene ex-situ and in-situ composite films with 2% concentration of graphene were first prepared and systematically investigated. The crystallinity of DSTMS-based composite films were confirmed by XRD analysis, and the functional groups of composite films can be obtained by FT-IR. Optical absorptions were recorded using UV–Vis-NIR spectral analysis, and the band gap and extinction coefficient of the films were calculated. The thermal stability of the composite films were analyzed by TG/DSC. The pressure sensitive resistance test showed that the pressure sensitive signal of the composite films were significantly increased after graphene added, while the signal of DSTMS film eventually disappears. This work expands the application of organic nonlinear crystal DSTMS in optics and electricity by doping graphene.

Notes

Acknowledgements

This work was supported by Project of Major Basic Research Projects of Shandong Natural Science Foundation (ZR2018ZB0650), Program for National Natural Science Foundation of China (No. 51172111 and No. 51402159) and a Project of Shandong Province Higher Educational Science and Technology Program (No. J14LA17), China Postdoctoral Science Foundation (No. 2015M57073), the Qingdao Postdoctoral Application Research Project (No. 2015116).

Supplementary material

10854_2018_442_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 39 KB)

References

  1. 1.
    S.R. Marder, J.W. Perry, W.P. Schaefer, Synthesis of organic salts with large second-order optical nonlinearities. Science 245, 626–628 (1989)CrossRefGoogle Scholar
  2. 2.
    Z. Yang et al., Single crystals of stilbazolium derivatives for second-order nonlinear optics. Adv. Funct. Mater. 15, 1072–1076 (2005)CrossRefGoogle Scholar
  3. 3.
    Z. Yang et al., Lager-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation. Adv. Funct. Mater. 17, 2018–2023 (2007)CrossRefGoogle Scholar
  4. 4.
    L. Mutter, F.D. Brunner, Z. Yang, M. Jazbinšek, P. Günter, Linear and nonlinear optical properties of the organic crystal DSTMS. J. Opt. Soc. Am. B 24, 2556–2561 (2007)CrossRefGoogle Scholar
  5. 5.
    M. Stillhart, A. Schneider, P. Günter, Optical properties of 4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate crystals at terahertz frequencies. J. Opt. Soc. Am. B 11, 1914–1919 (2008)CrossRefGoogle Scholar
  6. 6.
    C. Vicario, C. Ruchert, C.P. Hauri, High field broadband THz generation in organic materials. J. Mod. Opt. 62(18):1480–1485 (2013)Google Scholar
  7. 7.
    B. Monoszlai, C. Vicario, M. Jazbinsek, C.P. Hauri, High-energy terahertz pulses from organic crystals: DAST and DSTMS pumped at Ti:sapphire wavelength. Opt. Lett. 23, 5106–5109 (2013)CrossRefGoogle Scholar
  8. 8.
    C. Vicario, A.V. Ovchinnikov, S.I. Ashitkov, M.B. Agranat, V.E. Fortov, C.P. Hauri, Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser. Opt. Lett. 39, 6632–6635 (2014)CrossRefGoogle Scholar
  9. 9.
    B. Monoszlai, C. Vicario, M. Jazbinsek, C.P. Hauri, High-energy terahertz pulses from organic crystals: DAST and DSTMS pumped at Ti: sapphire wavelength. Opt. Lett. 38, 5106–5109 (2013)CrossRefGoogle Scholar
  10. 10.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)CrossRefGoogle Scholar
  11. 11.
    Q. Su, S.P. Pang, V. Alijani, C. Li, X.L. Feng, K. Muellen, Composites of graphene with large aromatic molecules. Adv. Mater 21, 3191 (2009)CrossRefGoogle Scholar
  12. 12.
    F.-X. Xiao, J. Miao, B. Liu, Layer-by-layer self-assembly of CdS quantum dots/graphene nanosheets hybrid films for photoelectrochemical and photocatalytic applications. J. Am. Chem. Soc. 136, 1559–1569 (2014)CrossRefGoogle Scholar
  13. 13.
    C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRefGoogle Scholar
  14. 14.
    H. Li et al., Layer-by-layer assembly and UV photoreduction of graphene-polyoxometalate composite films for electronics. J. Am. Chem. Soc. 133, 9423–9429 (2011)CrossRefGoogle Scholar
  15. 15.
    M.K. Shin et al., Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat. Commun. 3, 650–653 (2012)CrossRefGoogle Scholar
  16. 16.
    G. Han et al., MnO2 nanorods intercalating graphene oxide/polyaniline ternary composites for robust high-performance supercapacitors. Sci. Rep. 4, 4824–4828 (2014)CrossRefGoogle Scholar
  17. 17.
    S.R. Marder, J.W. Perry, C.P. Yakymyshyn, Organic salts with large second-order optical nonlinearities. Chem. Mater 6, 1137 (1994)CrossRefGoogle Scholar
  18. 18.
    M. Baldo et al., Organic vapor phase deposition. Adv. Mater. 10, 1505–1515 (1998)CrossRefGoogle Scholar
  19. 19.
    C.J. Shearer, A. Cherevan, D. Eder, Application and future challenges of functional nanocarbon hybrids. Adv. Mater. 26, 2295–2318 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Selvam, K. Sakthipandi, R. Suriyaprabha, K. Saminathan, V. Rajendran, Synthesis and characterization of electrochemicallyreduced graphene. Bull. Mater. Sci. 36, 1315–1321 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Gahlot, P.P. Sharma, V. Kulshrestha, P.K. Jha, SGO/SPES-based highly conducting polymer electrolyte membranes for fuel cell application. ACS Appl. Mater. Interfaces 6, 5595–5601 (2014)CrossRefGoogle Scholar
  23. 23.
    M.A. Raj, S.A. John, Fabrication of electrochemically reduced graphene oxide films on glassy carbon electrode by selfassembly method and their electrocatalytic application. J. Phys. Chem. C 117, 4326–4335 (2013)CrossRefGoogle Scholar
  24. 24.
    H. Becerril et al., Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008)CrossRefGoogle Scholar
  25. 25.
    M. Asemi, M. Ghanaatshoar, Preparation of CuCrO2 nanoparticles with narrow size distribution by sol-gel method. J. Sol–Gel Sci. Technol. 70, 416–421 (2014)CrossRefGoogle Scholar
  26. 26.
    R.J. Vijay, N. Melikechi, T. RajeshKumar, M. Jesudurai, P. Sagayaraj, Investigation on rapid growth of 4-N,N-dimethylamino-4′-N′-methylstilbazolium p-toluenesulphonate (DAST) crystals by SNM technique. J. Cryst. Growth 312, 420 (2010)CrossRefGoogle Scholar
  27. 27.
    Y. Zhao, G.-S. Tang, Z.-Z. Yu, J.S. Qi, The effect of graphite oxide on the thermoelectric properties of polyaniline. Carbon 13, 3064–3073 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fei Teng
    • 1
    • 2
  • Dong Chen
    • 1
    • 2
  • Yuzhe Ma
    • 1
    • 2
  • Shaohua Ji
    • 1
    • 2
  • Jiaojiao Liu
    • 1
    • 2
  • Tianhua Wang
    • 1
    • 2
  • Jie Tang
    • 1
    • 2
  • Lifeng Cao
    • 1
    • 2
    Email author
  • Bing Teng
    • 1
    • 2
    Email author
  1. 1.College of PhysicsQingdao UniversityQingdaoChina
  2. 2.National Demonstration Center for Experiment Applied Physics EducationQingdao UniversityQingdaoChina

Personalised recommendations