Solid state synthesis and luminescence of Zn2GeO4:Mn2+ phosphors using MnO2 as manganese source material: self-reduction of Mn4+ to Mn2+

  • Liang ZhaoEmail author
  • Shuang Yao
  • Huayin Sun
  • Qian Huang
  • Tao Wen
  • Jing Du


We synthesized Zn2GeO4:Mn2+ phosphors using MnO2 as manganese source material by a solid state reaction in air condition. The Zn2GeO4:Mn2+ phosphors show green emission band corresponding to the 4T1 → 6A1 transitions of Mn2+. The green emission of Zn2GeO4:Mn2+ phosphors gives clear evidence for the substitution of Mn2+ to Zn2+ in Zn2GeO4 since Mn2+ presents green emission when it locates in a weak crystal field of four coordinated tetrahedron and there are only tetrahedral Zn2+ sites in Zn2GeO4. The existence of Mn2+ emission also suggests a self-reduction of Mn4+ to Mn2+ in the solid state reaction under air condition at high temperature. Based on the substitution in the phosphors, the self-reduction mechanism is speculated.



This work was supported by the Science and Technology Foundation of Chongqing Education Commission (Grant No. KJ1601217).


  1. 1.
    Q. Zhou, L. Dolgov, A.M. Srivastava, L. Zhou, Z. Wang, J. Shi, M.D. Dramićanin, M.G. Brik, M. Wu, J. Mater. Chem. C 6, 2652 (2018)CrossRefGoogle Scholar
  2. 2.
    M.H. Du, J. Mater. Chem. C 2, 2475 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Liu, G. Zhang, J.C. Yu, Y. Guo, Dalton Trans. 42, 5092 (2013)CrossRefGoogle Scholar
  4. 4.
    X. Li, Y. Feng, M. Li, W. Li, H. Wei, D. Song, Adv. Funct. Mater. 25, 6858 (2015)CrossRefGoogle Scholar
  5. 5.
    Z. Gu, F. Liu, X. Li, Z.W. Pan, Phys. Chem. Chem. Phys. 15, 7488 (2013)CrossRefGoogle Scholar
  6. 6.
    Z.S. Liu, X.P. Jing, L.X. Wang, J. Electrochem. Soc. 154, H500 (2007)CrossRefGoogle Scholar
  7. 7.
    Y. Pan, L. Li, J. Lu, R. Pang, L. Wan, S. Huang, Dalton Trans. 45, 9506 (2016)CrossRefGoogle Scholar
  8. 8.
    F. Chi, X. Wei, B. Jiang, Y. Chen, C. Duan, M. Yin, Dalton Trans. 47, 1303 (2018)CrossRefGoogle Scholar
  9. 9.
    S. Takeshita, J. Honda, T. Isobe, T. Sawayama, S. Niikura, Cryst. Growth Des. 10, 4494 (2010)CrossRefGoogle Scholar
  10. 10.
    Q. Li, X. Miao, C. Wang, L. Yin, J. Mater. Chem. A 3, 21328 (2015)CrossRefGoogle Scholar
  11. 11.
    J.Q. Hu, E.H. Song, S. Ye, B. Zhou, Q.Y. Zhang, J. Mater. Chem. C 5, 3343 (2017)CrossRefGoogle Scholar
  12. 12.
    H.L. Fu, Z.X. Liu, Z.J. Liu, Z.L. Wang, Sustainability 10, 2488 (2018)CrossRefGoogle Scholar
  13. 13.
    A. Yang, Y. Han, Y. Pan, H. Xing, J. Li, Results Phys. 7, 1046 (2017)CrossRefGoogle Scholar
  14. 14.
    S. Wu, Z. Wang, X. Ouyang, Z. Lin, Nanoscale 5, 12335 (2013)CrossRefGoogle Scholar
  15. 15.
    Y. Yang, B. Liu, Y. Zhng, X. Lv, L. Wei, X. Wang, Superlattices Microstruct. 90, 27 (2016)CrossRefGoogle Scholar
  16. 16.
    H. He, Y. Zhang, Q. Pan, G. Wu, G. Dong, J. Qiu, J. Mater. Chem. C 3, 5419 (2015)CrossRefGoogle Scholar
  17. 17.
    W.D. Partlow, D.W. Feldman, J. Lumin. 6, 11 (1973)CrossRefGoogle Scholar
  18. 18.
    K. Terayama, M. Ikeda, Trans. Jpn. Inst. Metals 24, 754 (1983)CrossRefGoogle Scholar
  19. 19.
    M. Peng, G. Hong, J. Lumin. 127, 735 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Liang Zhao
    • 1
    Email author
  • Shuang Yao
    • 1
  • Huayin Sun
    • 1
  • Qian Huang
    • 1
  • Tao Wen
    • 1
  • Jing Du
    • 2
  1. 1.School of Civil and Architectural EngineeringYangtze Normal UniversityChongqingPeople’s Republic of China
  2. 2.College of Materials and Mineral ResourcesXi’an University of Architecture and TechnologyXi’anPeople’s Republic of China

Personalised recommendations